reorganizing project to more general synchronizer in preparation for export/delivery to RVK museum.
This commit is contained in:
@@ -1,57 +0,0 @@
|
||||
/* Philips DVD player codefinder
|
||||
* Code written by Joe Foley <foley@ru.is>
|
||||
* on 2013-09-08
|
||||
*
|
||||
* Requires libraries:
|
||||
* Arduino-IRremote https://github.com/shirriff/Arduino-IRremote
|
||||
* Instructions http://www.righto.com/2009/08/multi-protocol-infrared-remote-library.html
|
||||
*
|
||||
* The IRremote library uses Pin 3 for the Anode (longer pin)
|
||||
* We have made a ground pin on Pin 4 for the Cathode (shorter pin)
|
||||
*/
|
||||
|
||||
|
||||
#include <IRremote.h>
|
||||
|
||||
int pinGND=4; // Longer leg on the IR LED
|
||||
int pinLED=13; // The heartbeat LED on the board
|
||||
|
||||
|
||||
IRsend irsend;
|
||||
unsigned long testcode;
|
||||
void setup() {
|
||||
pinMode(pinGND,OUTPUT);
|
||||
pinMode(pinLED,OUTPUT);
|
||||
Serial.begin(115200);
|
||||
|
||||
Serial.println("Philips Codefinder $Rev$");
|
||||
Serial.println("Code by Joe Foley <foley@ru.is>");
|
||||
Serial.println("$URL$");
|
||||
Serial.println("$Id$");
|
||||
|
||||
}
|
||||
|
||||
/********************************************************************/
|
||||
void loop() {
|
||||
for (int address = 0; address < 0x100; address++) {
|
||||
for (int command = 0; command < 0x100; command++) {
|
||||
Serial.print("address: ");
|
||||
Serial.print(address, HEX);
|
||||
Serial.print(" command: ");
|
||||
Serial.print(command, HEX);
|
||||
testcode = ( address << 16 ) + command;
|
||||
Serial.print(" testcode: ");
|
||||
Serial.println(testcode, HEX);
|
||||
irsend.sendRC6(testcode, 16);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/**************************************************************/
|
||||
void waitsec(int sec) {
|
||||
Serial.print("Wait ");
|
||||
Serial.print(sec);
|
||||
Serial.println(" seconds");
|
||||
delay(sec*1000);
|
||||
}
|
||||
@@ -1,135 +0,0 @@
|
||||
/* DVD IR Synchronizer for Philips DVP3142/12
|
||||
* Developed for Art Installation "Thor"
|
||||
* Code written by Joe Foley <foley@ru.is>
|
||||
* on 2013-09-08
|
||||
*
|
||||
*
|
||||
* Requires libraries:
|
||||
* Arduino-IRremote https://github.com/shirriff/Arduino-IRremote
|
||||
* Instructions http://www.righto.com/2009/08/multi-protocol-infrared-remote-library.html
|
||||
*
|
||||
* IR Remote codes from IRrecvDemo
|
||||
*
|
||||
*
|
||||
* Details on the Philips RC6 coding
|
||||
* http://www.pcbheaven.com/userpages/The_Philips_RC6_Protocol/
|
||||
*
|
||||
* The IRremote library uses Pin 3 for the Anode (longer pin)
|
||||
* We have made a ground pin on Pin 4 for the Cathode (shorter pin)
|
||||
*/
|
||||
|
||||
|
||||
#include <IRremote.h>
|
||||
|
||||
int pinGND=4; // Longer leg on the IR LED
|
||||
int pinLED=13; // The heartbeat LED on the board
|
||||
|
||||
int heartbeat=0;
|
||||
int secs;
|
||||
// Sarcity 20:58
|
||||
int playtime= 58*44+10; // Play time in seconds, you usually leave off a second or two
|
||||
|
||||
//int playtime= 10; // testing
|
||||
|
||||
IRsend irsend;
|
||||
|
||||
void setup() {
|
||||
pinMode(pinGND,OUTPUT);
|
||||
pinMode(pinLED,OUTPUT);
|
||||
Serial.begin(115200);
|
||||
|
||||
Serial.println("Panasonic DVD DVP-3142/12 Synchronizer $Rev$");
|
||||
Serial.println("For \"Sarcity\" by Thor Elis (1981)");
|
||||
Serial.println("Code by Joe Foley <foley@ru.is>");
|
||||
Serial.println("$URL$");
|
||||
Serial.println("$Id$");
|
||||
Serial.print("Playtime: ");
|
||||
secs=playtime;
|
||||
Serial.print("sec:");
|
||||
Serial.print(secs);
|
||||
Serial.print(" / mm:ss ");
|
||||
Serial.print(secs/60);
|
||||
Serial.print(":");
|
||||
Serial.print(secs % 60);
|
||||
Serial.println("");
|
||||
|
||||
secs=playtime;
|
||||
send_play();
|
||||
}
|
||||
|
||||
/********************************************************************/
|
||||
void loop() {
|
||||
Serial.println("Sync");
|
||||
//send_pause();
|
||||
//waitsec(2);
|
||||
|
||||
// The three players don't always see the "previous command" so we send it multiple times
|
||||
send_previous();
|
||||
send_previous();
|
||||
send_previous();
|
||||
//waitsec(2);
|
||||
// Don't send play because previous automatically starts it
|
||||
// If we hit play it will merely pause it.
|
||||
//send_play();
|
||||
|
||||
for(int t = 0; t < playtime; t++) {
|
||||
// This will not give us perfect 1 second timing
|
||||
// but it is good enough for most video applications
|
||||
// The most critical is having everything start at the
|
||||
// same time.
|
||||
Serial.print("sec:");
|
||||
Serial.print(playtime);
|
||||
Serial.print(" / mm:ss ");
|
||||
Serial.print(t/60);
|
||||
Serial.print(":");
|
||||
Serial.print(t % 60);
|
||||
Serial.println("");
|
||||
if (heartbeat == 1) {
|
||||
digitalWrite(pinLED, HIGH);
|
||||
heartbeat = 0;
|
||||
}
|
||||
else {
|
||||
digitalWrite(pinLED, LOW);
|
||||
heartbeat = 1;
|
||||
}
|
||||
delay(1000);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/**************************************************************/
|
||||
void waitsec(int sec) {
|
||||
Serial.print("Wait ");
|
||||
Serial.print(sec);
|
||||
Serial.println(" seconds");
|
||||
delay(sec*1000);
|
||||
}
|
||||
|
||||
|
||||
/********************************************************************/
|
||||
void send_stop() {
|
||||
// First comes the pre-data bits, then the command code
|
||||
Serial.println(" stop");
|
||||
irsend.sendRC6(0x10431,20);
|
||||
}
|
||||
|
||||
/********************************************************************/
|
||||
void send_play() {
|
||||
// First comes the pre-data bits, then the command code
|
||||
Serial.println(" play");
|
||||
irsend.sendRC6(0x1042C,20);
|
||||
}
|
||||
|
||||
/********************************************************************/
|
||||
void send_pause() {
|
||||
// First comes the pre-data bits, then the command code
|
||||
Serial.println(" pause");
|
||||
irsend.sendRC6(0x1042C,20);
|
||||
}
|
||||
|
||||
/********************************************************************/
|
||||
void send_previous() {
|
||||
// First comes the pre-data bits, then the command code
|
||||
Serial.println(" previous");
|
||||
irsend.sendRC6(0x10421, 20);
|
||||
}
|
||||
@@ -1,130 +0,0 @@
|
||||
/* DVD IR Synchronizer for Philips DVP3142/12
|
||||
* Developed for Art Installation "West"
|
||||
* Code written by Joe Foley <foley@ru.is>
|
||||
* on 2013-09-08
|
||||
*
|
||||
*
|
||||
* Requires libraries:
|
||||
* Arduino-IRremote https://github.com/shirriff/Arduino-IRremote
|
||||
* Instructions http://www.righto.com/2009/08/multi-protocol-infrared-remote-library.html
|
||||
*
|
||||
* IR Remote codes from IRrecvDemo
|
||||
*
|
||||
* The IRremote library uses Pin 3 for the Anode (longer pin)
|
||||
* We have made a ground pin on Pin 4 for the Cathode (shorter pin)
|
||||
*/
|
||||
|
||||
|
||||
#include <IRremote.h>
|
||||
|
||||
int pinGND=4; // Longer leg on the IR LED
|
||||
int pinLED=13; // The heartbeat LED on the board
|
||||
|
||||
int heartbeat=0;
|
||||
int secs;
|
||||
// West 25:41
|
||||
int playtime= 25*60+40; // Play time in seconds, you usually leave off a second or two
|
||||
|
||||
//int playtime= 10; // testing
|
||||
|
||||
IRsend irsend;
|
||||
|
||||
void setup() {
|
||||
pinMode(pinGND,OUTPUT);
|
||||
pinMode(pinLED,OUTPUT);
|
||||
Serial.begin(115200);
|
||||
|
||||
Serial.println("Scott DVX605 HD(Rev2) Synchronizer $Rev$");
|
||||
Serial.println("For \"West\" by Steina Vasulka (1983)");
|
||||
Serial.println("Code by Joe Foley <foley@ru.is>");
|
||||
Serial.println("$URL$");
|
||||
Serial.println("$Id$");
|
||||
Serial.print("Playtime: ");
|
||||
secs=playtime;
|
||||
Serial.print("sec:");
|
||||
Serial.print(secs);
|
||||
Serial.print(" / mm:ss ");
|
||||
Serial.print(secs/60);
|
||||
Serial.print(":");
|
||||
Serial.print(secs % 60);
|
||||
Serial.println("");
|
||||
|
||||
secs=playtime;
|
||||
|
||||
}
|
||||
|
||||
/********************************************************************/
|
||||
void loop() {
|
||||
Serial.println("Sync");
|
||||
//send_pause();
|
||||
//waitsec(2);
|
||||
|
||||
send_previous();
|
||||
send_previous();
|
||||
send_previous();
|
||||
//waitsec(2);
|
||||
// Don't send play because previous automatically starts it
|
||||
// If we hit play it will merely pause it.
|
||||
//send_play();
|
||||
|
||||
for(int t = 0; t < playtime; t++) {
|
||||
// This will not give us perfect 1 second timing
|
||||
// but it is good enough for most video applications
|
||||
// The most critical is having everything start at the
|
||||
// same time.
|
||||
Serial.print("sec:");
|
||||
Serial.print(playtime);
|
||||
Serial.print(" / mm:ss ");
|
||||
Serial.print(t/60);
|
||||
Serial.print(":");
|
||||
Serial.print(t % 60);
|
||||
Serial.println("");
|
||||
if (heartbeat == 1) {
|
||||
digitalWrite(pinLED, HIGH);
|
||||
heartbeat = 0;
|
||||
}
|
||||
else {
|
||||
digitalWrite(pinLED, LOW);
|
||||
heartbeat = 1;
|
||||
}
|
||||
delay(1000);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/**************************************************************/
|
||||
void waitsec(int sec) {
|
||||
Serial.print("Wait ");
|
||||
Serial.print(sec);
|
||||
Serial.println(" seconds");
|
||||
delay(sec*1000);
|
||||
}
|
||||
|
||||
|
||||
/********************************************************************/
|
||||
void send_stop() {
|
||||
// First comes the pre-data bits, then the command code
|
||||
Serial.println(" stop");
|
||||
irsend.sendNEC(0xFFC837,32);
|
||||
}
|
||||
|
||||
/********************************************************************/
|
||||
void send_play() {
|
||||
// First comes the pre-data bits, then the command code
|
||||
Serial.println(" play");
|
||||
irsend.sendNEC(0xFFF00F,32);
|
||||
}
|
||||
|
||||
/********************************************************************/
|
||||
void send_pause() {
|
||||
// First comes the pre-data bits, then the command code
|
||||
Serial.println(" pause");
|
||||
irsend.sendNEC(0xFFD02F,32);
|
||||
}
|
||||
|
||||
/********************************************************************/
|
||||
void send_previous() {
|
||||
// First comes the pre-data bits, then the command code
|
||||
Serial.println(" previous");
|
||||
irsend.sendNEC(0xFF50AF, 32);
|
||||
}
|
||||
@@ -1,132 +0,0 @@
|
||||
/* DVD IR Synchronizer for Toshiba SD1091EKE
|
||||
* Developed for Art Installation by Steina
|
||||
* Code written by Joe Foley <foley@ru.is>
|
||||
* on 2013-09-08
|
||||
*
|
||||
* Requires libraries:
|
||||
* Arduino-IRremote https://github.com/shirriff/Arduino-IRremote
|
||||
*
|
||||
* More codes at http://www.lirc.org/
|
||||
* The compatible remote is SE-R0301
|
||||
* We use the codes for the SE-R0031
|
||||
* http://lirc.sourceforge.net/remotes/toshiba/SE-R0031
|
||||
* Note that this has some similar codes
|
||||
*
|
||||
* The IRremote library uses Pin 3 for the Anode (longer pin)
|
||||
* We have made a ground pin on Pin 4 for the Cathode (shorter pin)
|
||||
*
|
||||
*
|
||||
*/
|
||||
|
||||
#include <IRremote.h>
|
||||
|
||||
int pinGND=4; // Longer leg on the IR LED
|
||||
int pinLED=13; // The heartbeat LED on the board
|
||||
|
||||
int secs;
|
||||
int heartbeat=0;
|
||||
|
||||
// West 25:41
|
||||
int playtime= 25*60+40; // set here your DVD title playtime in sec leave a little extra
|
||||
|
||||
IRsend irsend;
|
||||
|
||||
void setup() {
|
||||
pinMode(pinGND,OUTPUT);
|
||||
pinMode(pinLED,OUTPUT);
|
||||
Serial.begin(115200);
|
||||
|
||||
|
||||
Serial.println("Toshiba DVD SD1091EKE Synchronizer $Rev$");
|
||||
Serial.println("For \"West\" by Steina Vasulka (1983)");
|
||||
Serial.println("Code by Joe Foley <foley@ru.is>");
|
||||
Serial.println("$URL$");
|
||||
Serial.println("$Id$");
|
||||
Serial.print("Playtime: ");
|
||||
secs=playtime;
|
||||
Serial.print("sec:");
|
||||
Serial.print(secs);
|
||||
Serial.print(" / mm:ss ");
|
||||
Serial.print(secs/60);
|
||||
Serial.print(":");
|
||||
Serial.print(secs % 60);
|
||||
Serial.println("");
|
||||
|
||||
secs=playtime;
|
||||
|
||||
}
|
||||
|
||||
/********************************************************************/
|
||||
void loop() {
|
||||
Serial.println("Sync");
|
||||
// The DVD player starts playing automatically, so we should pause it
|
||||
send_pause();
|
||||
waitsec(2);
|
||||
|
||||
send_previous();
|
||||
// on this model, previous immediately starts playing
|
||||
|
||||
for(int t = 0; t < playtime; t++) {
|
||||
// This will not give us perfect 1 second timing
|
||||
// but it is good enough for most video applications
|
||||
// The most critical is having everything start at the
|
||||
// same time.
|
||||
Serial.print("sec:");
|
||||
Serial.print(playtime);
|
||||
Serial.print(" / mm:ss ");
|
||||
Serial.print(t/60);
|
||||
Serial.print(":");
|
||||
Serial.print(t % 60);
|
||||
Serial.println("");
|
||||
if (heartbeat == 1) {
|
||||
digitalWrite(pinLED, HIGH);
|
||||
heartbeat = 0;
|
||||
}
|
||||
else {
|
||||
digitalWrite(pinLED, LOW);
|
||||
heartbeat = 1;
|
||||
}
|
||||
delay(1000);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/**************************************************************/
|
||||
void waitsec(int sec) {
|
||||
Serial.print("Wait ");
|
||||
Serial.print(sec);
|
||||
Serial.println(" seconds");
|
||||
delay(sec*1000);
|
||||
}
|
||||
|
||||
|
||||
/********************************************************************/
|
||||
// NEC data format: first comes the pre-data bits, then the command code
|
||||
void send_stop() {
|
||||
Serial.println(" stop");
|
||||
irsend.sendNEC(0xA25D28D7,32);
|
||||
}
|
||||
|
||||
/********************************************************************/
|
||||
void send_play() {
|
||||
// Note that play and pause are a toggle for the same command
|
||||
Serial.println(" play");
|
||||
irsend.sendNEC(0xA25DA857, 32);
|
||||
|
||||
}
|
||||
|
||||
/********************************************************************/
|
||||
void send_pause() {
|
||||
// On this model, pause and play are the same button so it toggles
|
||||
// We use the "step" command which will always pause, no matter
|
||||
// how many times we press it.
|
||||
Serial.println(" step/pause");
|
||||
irsend.sendNEC(0xA25D00FF,32);
|
||||
}
|
||||
|
||||
/********************************************************************/
|
||||
void send_previous() {
|
||||
// First comes the pre-data bits, then the command code
|
||||
Serial.println(" previous");
|
||||
irsend.sendNEC(0xA25DC43B, 32);
|
||||
}
|
||||
@@ -1,126 +0,0 @@
|
||||
/* DVD IR Synchronizer for Toshiba SD590EKE
|
||||
* Developed for Art Installation "Dawn" by Sigrun Hardardottir<sigrun@stalverk.is>
|
||||
* Code written by Joe Foley <foley@ru.is>
|
||||
* on 2013-09-08
|
||||
*
|
||||
* Requires libraries:
|
||||
* Arduino-IRremote https://github.com/shirriff/Arduino-IRremote
|
||||
*
|
||||
* IR Remote codes from SE-R0313
|
||||
* http://lirc.sourceforge.net/remotes/toshiba/SE-R0313
|
||||
*
|
||||
* The IRremote library uses Pin 3 for the Anode (longer pin)
|
||||
* We have made a ground pin on Pin 4 for the Cathode (shorter pin)
|
||||
*/
|
||||
|
||||
|
||||
#include <IRremote.h>
|
||||
|
||||
int pinGND=4; // Longer leg on the IR LED
|
||||
int pinLED=13; // The heartbeat LED on the board
|
||||
|
||||
int heartbeat=0;
|
||||
int secs;
|
||||
// Dawn 61:36
|
||||
int playtime= 61*60+35; // set here your DVD title playtime in sec leave a little extra
|
||||
|
||||
IRsend irsend;
|
||||
|
||||
void setup() {
|
||||
pinMode(pinGND,OUTPUT);
|
||||
pinMode(pinLED,OUTPUT);
|
||||
Serial.begin(115200);
|
||||
|
||||
Serial.println("Toshiba DVD SD590EKE Synchronizer $Rev$");
|
||||
Serial.println("For \"Dawn\" by Sigrun Hardar on 1986");
|
||||
Serial.println("Code by Joe Foley <foley@ru.is>");
|
||||
Serial.println("$URL$");
|
||||
Serial.println("$Id$");
|
||||
Serial.print("Playtime: ");
|
||||
secs=playtime;
|
||||
Serial.print("sec:");
|
||||
Serial.print(secs);
|
||||
Serial.print(" / mm:ss ");
|
||||
Serial.print(secs/60);
|
||||
Serial.print(":");
|
||||
Serial.print(secs % 60);
|
||||
Serial.println("");
|
||||
|
||||
// The DVD player starts playing automatically, so maybe we should pause it
|
||||
//send_pause();
|
||||
//waitsec(2);
|
||||
secs=playtime;
|
||||
|
||||
}
|
||||
|
||||
/********************************************************************/
|
||||
void loop() {
|
||||
Serial.println("Sync");
|
||||
send_pause();
|
||||
waitsec(2);
|
||||
send_previous();
|
||||
//waitsec(2);
|
||||
|
||||
//send_play(); // this should not be necessary, but just in case
|
||||
for(int t = 0; t < playtime; t++) {
|
||||
// This will not give us perfect 1 second timing
|
||||
// but it is good enough for most video applications
|
||||
// The most critical is having everything start at the
|
||||
// same time.
|
||||
Serial.print("sec:");
|
||||
Serial.print(playtime);
|
||||
Serial.print(" / mm:ss ");
|
||||
Serial.print(t/60);
|
||||
Serial.print(":");
|
||||
Serial.print(t % 60);
|
||||
Serial.println("");
|
||||
if (heartbeat == 1) {
|
||||
digitalWrite(pinLED, HIGH);
|
||||
heartbeat = 0;
|
||||
}
|
||||
else {
|
||||
digitalWrite(pinLED, LOW);
|
||||
heartbeat = 1;
|
||||
}
|
||||
delay(1000);
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
/**************************************************************/
|
||||
void waitsec(int sec) {
|
||||
Serial.print("Wait ");
|
||||
Serial.print(sec);
|
||||
Serial.println(" seconds");
|
||||
delay(sec*1000);
|
||||
}
|
||||
|
||||
|
||||
/********************************************************************/
|
||||
void send_stop() {
|
||||
// First comes the pre-data bits, then the command code
|
||||
Serial.println(" stop");
|
||||
irsend.sendNEC(0xA25D28D7,32);
|
||||
}
|
||||
|
||||
/********************************************************************/
|
||||
void send_play() {
|
||||
// First comes the pre-data bits, then the command code
|
||||
Serial.println(" play");
|
||||
irsend.sendNEC(0xA25DA857,32);
|
||||
}
|
||||
|
||||
/********************************************************************/
|
||||
void send_pause() {
|
||||
// First comes the pre-data bits, then the command code
|
||||
Serial.println(" pause");
|
||||
irsend.sendNEC(0xA25D00FF, 32);
|
||||
}
|
||||
|
||||
/********************************************************************/
|
||||
void send_previous() {
|
||||
// First comes the pre-data bits, then the command code
|
||||
Serial.println(" previous");
|
||||
irsend.sendNEC(0xA25DC43B, 32);
|
||||
}
|
||||
@@ -1,29 +0,0 @@
|
||||
/*
|
||||
* IRremote: IRsendDemo - demonstrates sending IR codes with IRsend
|
||||
* An IR LED must be connected to Arduino PWM pin 3.
|
||||
* Version 0.1 July, 2009
|
||||
* Copyright 2009 Ken Shirriff
|
||||
* http://arcfn.com
|
||||
* JVC and Panasonic protocol added by Kristian Lauszus (Thanks to zenwheel and other people at the original blog post)
|
||||
*/
|
||||
#include <IRremote.h>
|
||||
|
||||
#define PanasonicAddress 0x4004 // Panasonic address (Pre data)
|
||||
#define PanasonicPower 0x100BCBD // Panasonic Power button
|
||||
|
||||
#define JVCPower 0xC5E8
|
||||
|
||||
IRsend irsend;
|
||||
|
||||
void setup()
|
||||
{
|
||||
}
|
||||
|
||||
void loop() {
|
||||
irsend.sendPanasonic(PanasonicAddress,PanasonicPower); // This should turn your TV on and off
|
||||
|
||||
irsend.sendJVC(JVCPower, 16,0); // hex value, 16 bits, no repeat
|
||||
delayMicroseconds(50); // see http://www.sbprojects.com/knowledge/ir/jvc.php for information
|
||||
irsend.sendJVC(JVCPower, 16,1); // hex value, 16 bits, repeat
|
||||
delayMicroseconds(50);
|
||||
}
|
||||
Binary file not shown.
File diff suppressed because it is too large
Load Diff
@@ -1,118 +0,0 @@
|
||||
/*
|
||||
* IRremote
|
||||
* Version 0.1 July, 2009
|
||||
* Copyright 2009 Ken Shirriff
|
||||
* For details, see http://arcfn.com/2009/08/multi-protocol-infrared-remote-library.htm http://arcfn.com
|
||||
* Edited by Mitra to add new controller SANYO
|
||||
*
|
||||
* Interrupt code based on NECIRrcv by Joe Knapp
|
||||
* http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1210243556
|
||||
* Also influenced by http://zovirl.com/2008/11/12/building-a-universal-remote-with-an-arduino/
|
||||
*
|
||||
* JVC and Panasonic protocol added by Kristian Lauszus (Thanks to zenwheel and other people at the original blog post)
|
||||
*/
|
||||
|
||||
#ifndef IRremote_h
|
||||
#define IRremote_h
|
||||
|
||||
// The following are compile-time library options.
|
||||
// If you change them, recompile the library.
|
||||
// If DEBUG is defined, a lot of debugging output will be printed during decoding.
|
||||
// TEST must be defined for the IRtest unittests to work. It will make some
|
||||
// methods virtual, which will be slightly slower, which is why it is optional.
|
||||
// #define DEBUG
|
||||
// #define TEST
|
||||
|
||||
// Results returned from the decoder
|
||||
class decode_results {
|
||||
public:
|
||||
int decode_type; // NEC, SONY, RC5, UNKNOWN
|
||||
unsigned int panasonicAddress; // This is only used for decoding Panasonic data
|
||||
unsigned long value; // Decoded value
|
||||
int bits; // Number of bits in decoded value
|
||||
volatile unsigned int *rawbuf; // Raw intervals in .5 us ticks
|
||||
int rawlen; // Number of records in rawbuf.
|
||||
};
|
||||
|
||||
// Values for decode_type
|
||||
#define NEC 1
|
||||
#define SONY 2
|
||||
#define RC5 3
|
||||
#define RC6 4
|
||||
#define DISH 5
|
||||
#define SHARP 6
|
||||
#define PANASONIC 7
|
||||
#define JVC 8
|
||||
#define SANYO 9
|
||||
#define MITSUBISHI 10
|
||||
#define UNKNOWN -1
|
||||
|
||||
// Decoded value for NEC when a repeat code is received
|
||||
#define REPEAT 0xffffffff
|
||||
|
||||
// main class for receiving IR
|
||||
class IRrecv
|
||||
{
|
||||
public:
|
||||
IRrecv(int recvpin);
|
||||
void blink13(int blinkflag);
|
||||
int decode(decode_results *results);
|
||||
void enableIRIn();
|
||||
void resume();
|
||||
private:
|
||||
// These are called by decode
|
||||
int getRClevel(decode_results *results, int *offset, int *used, int t1);
|
||||
long decodeNEC(decode_results *results);
|
||||
long decodeSony(decode_results *results);
|
||||
long decodeSanyo(decode_results *results);
|
||||
long decodeMitsubishi(decode_results *results);
|
||||
long decodeRC5(decode_results *results);
|
||||
long decodeRC6(decode_results *results);
|
||||
long decodePanasonic(decode_results *results);
|
||||
long decodeJVC(decode_results *results);
|
||||
long decodeHash(decode_results *results);
|
||||
int compare(unsigned int oldval, unsigned int newval);
|
||||
|
||||
}
|
||||
;
|
||||
|
||||
// Only used for testing; can remove virtual for shorter code
|
||||
#ifdef TEST
|
||||
#define VIRTUAL virtual
|
||||
#else
|
||||
#define VIRTUAL
|
||||
#endif
|
||||
|
||||
class IRsend
|
||||
{
|
||||
public:
|
||||
IRsend() {}
|
||||
void sendNEC(unsigned long data, int nbits);
|
||||
void sendSony(unsigned long data, int nbits);
|
||||
// Neither Sanyo nor Mitsubishi send is implemented yet
|
||||
// void sendSanyo(unsigned long data, int nbits);
|
||||
// void sendMitsubishi(unsigned long data, int nbits);
|
||||
void sendRaw(unsigned int buf[], int len, int hz);
|
||||
void sendRC5(unsigned long data, int nbits);
|
||||
void sendRC6(unsigned long data, int nbits);
|
||||
void sendDISH(unsigned long data, int nbits);
|
||||
void sendSharp(unsigned long data, int nbits);
|
||||
void sendPanasonic(unsigned int address, unsigned long data);
|
||||
void sendJVC(unsigned long data, int nbits, int repeat); // *Note instead of sending the REPEAT constant if you want the JVC repeat signal sent, send the original code value and change the repeat argument from 0 to 1. JVC protocol repeats by skipping the header NOT by sending a separate code value like NEC does.
|
||||
// private:
|
||||
void enableIROut(int khz);
|
||||
VIRTUAL void mark(int usec);
|
||||
VIRTUAL void space(int usec);
|
||||
}
|
||||
;
|
||||
|
||||
// Some useful constants
|
||||
|
||||
#define USECPERTICK 50 // microseconds per clock interrupt tick
|
||||
#define RAWBUF 100 // Length of raw duration buffer
|
||||
|
||||
// Marks tend to be 100us too long, and spaces 100us too short
|
||||
// when received due to sensor lag.
|
||||
#define MARK_EXCESS 100
|
||||
|
||||
#endif
|
||||
@@ -1,464 +0,0 @@
|
||||
/*
|
||||
* IRremote
|
||||
* Version 0.1 July, 2009
|
||||
* Copyright 2009 Ken Shirriff
|
||||
* For details, see http://arcfn.com/2009/08/multi-protocol-infrared-remote-library.html
|
||||
*
|
||||
* Modified by Paul Stoffregen <paul@pjrc.com> to support other boards and timers
|
||||
*
|
||||
* Interrupt code based on NECIRrcv by Joe Knapp
|
||||
* http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1210243556
|
||||
* Also influenced by http://zovirl.com/2008/11/12/building-a-universal-remote-with-an-arduino/
|
||||
*
|
||||
* JVC and Panasonic protocol added by Kristian Lauszus (Thanks to zenwheel and other people at the original blog post)
|
||||
*/
|
||||
|
||||
#ifndef IRremoteint_h
|
||||
#define IRremoteint_h
|
||||
|
||||
#if defined(ARDUINO) && ARDUINO >= 100
|
||||
#include <Arduino.h>
|
||||
#else
|
||||
#include <WProgram.h>
|
||||
#endif
|
||||
|
||||
// define which timer to use
|
||||
//
|
||||
// Uncomment the timer you wish to use on your board. If you
|
||||
// are using another library which uses timer2, you have options
|
||||
// to switch IRremote to use a different timer.
|
||||
|
||||
// Arduino Mega
|
||||
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
|
||||
//#define IR_USE_TIMER1 // tx = pin 11
|
||||
#define IR_USE_TIMER2 // tx = pin 9
|
||||
//#define IR_USE_TIMER3 // tx = pin 5
|
||||
//#define IR_USE_TIMER4 // tx = pin 6
|
||||
//#define IR_USE_TIMER5 // tx = pin 46
|
||||
|
||||
// Teensy 1.0
|
||||
#elif defined(__AVR_AT90USB162__)
|
||||
#define IR_USE_TIMER1 // tx = pin 17
|
||||
|
||||
// Teensy 2.0
|
||||
#elif defined(__AVR_ATmega32U4__)
|
||||
//#define IR_USE_TIMER1 // tx = pin 14
|
||||
//#define IR_USE_TIMER3 // tx = pin 9
|
||||
#define IR_USE_TIMER4_HS // tx = pin 10
|
||||
|
||||
// Teensy++ 1.0 & 2.0
|
||||
#elif defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB1286__)
|
||||
//#define IR_USE_TIMER1 // tx = pin 25
|
||||
#define IR_USE_TIMER2 // tx = pin 1
|
||||
//#define IR_USE_TIMER3 // tx = pin 16
|
||||
|
||||
// Sanguino
|
||||
#elif defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644__)
|
||||
//#define IR_USE_TIMER1 // tx = pin 13
|
||||
#define IR_USE_TIMER2 // tx = pin 14
|
||||
|
||||
// Atmega8
|
||||
#elif defined(__AVR_ATmega8P__) || defined(__AVR_ATmega8__)
|
||||
#define IR_USE_TIMER1 // tx = pin 9
|
||||
|
||||
#elif defined( __AVR_ATtinyX4__ )
|
||||
#define IR_USE_TIMER1 // tx = pin 6
|
||||
|
||||
// Arduino Duemilanove, Diecimila, LilyPad, Mini, Fio, etc
|
||||
#else
|
||||
//#define IR_USE_TIMER1 // tx = pin 9
|
||||
#define IR_USE_TIMER2 // tx = pin 3
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
#ifdef F_CPU
|
||||
#define SYSCLOCK F_CPU // main Arduino clock
|
||||
#else
|
||||
#define SYSCLOCK 16000000 // main Arduino clock
|
||||
#endif
|
||||
|
||||
#define ERR 0
|
||||
#define DECODED 1
|
||||
|
||||
|
||||
// defines for setting and clearing register bits
|
||||
#ifndef cbi
|
||||
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
|
||||
#endif
|
||||
#ifndef sbi
|
||||
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
|
||||
#endif
|
||||
|
||||
// Pulse parms are *50-100 for the Mark and *50+100 for the space
|
||||
// First MARK is the one after the long gap
|
||||
// pulse parameters in usec
|
||||
#define NEC_HDR_MARK 9000
|
||||
#define NEC_HDR_SPACE 4500
|
||||
#define NEC_BIT_MARK 560
|
||||
#define NEC_ONE_SPACE 1600
|
||||
#define NEC_ZERO_SPACE 560
|
||||
#define NEC_RPT_SPACE 2250
|
||||
|
||||
#define SONY_HDR_MARK 2400
|
||||
#define SONY_HDR_SPACE 600
|
||||
#define SONY_ONE_MARK 1200
|
||||
#define SONY_ZERO_MARK 600
|
||||
#define SONY_RPT_LENGTH 45000
|
||||
#define SONY_DOUBLE_SPACE_USECS 500 // usually ssee 713 - not using ticks as get number wrapround
|
||||
|
||||
// SA 8650B
|
||||
#define SANYO_HDR_MARK 3500 // seen range 3500
|
||||
#define SANYO_HDR_SPACE 950 // seen 950
|
||||
#define SANYO_ONE_MARK 2400 // seen 2400
|
||||
#define SANYO_ZERO_MARK 700 // seen 700
|
||||
#define SANYO_DOUBLE_SPACE_USECS 800 // usually ssee 713 - not using ticks as get number wrapround
|
||||
#define SANYO_RPT_LENGTH 45000
|
||||
|
||||
// Mitsubishi RM 75501
|
||||
// 14200 7 41 7 42 7 42 7 17 7 17 7 18 7 41 7 18 7 17 7 17 7 18 7 41 8 17 7 17 7 18 7 17 7
|
||||
|
||||
// #define MITSUBISHI_HDR_MARK 250 // seen range 3500
|
||||
#define MITSUBISHI_HDR_SPACE 350 // 7*50+100
|
||||
#define MITSUBISHI_ONE_MARK 1950 // 41*50-100
|
||||
#define MITSUBISHI_ZERO_MARK 750 // 17*50-100
|
||||
// #define MITSUBISHI_DOUBLE_SPACE_USECS 800 // usually ssee 713 - not using ticks as get number wrapround
|
||||
// #define MITSUBISHI_RPT_LENGTH 45000
|
||||
|
||||
|
||||
#define RC5_T1 889
|
||||
#define RC5_RPT_LENGTH 46000
|
||||
|
||||
#define RC6_HDR_MARK 2666
|
||||
#define RC6_HDR_SPACE 889
|
||||
#define RC6_T1 444
|
||||
#define RC6_RPT_LENGTH 46000
|
||||
|
||||
#define SHARP_BIT_MARK 245
|
||||
#define SHARP_ONE_SPACE 1805
|
||||
#define SHARP_ZERO_SPACE 795
|
||||
#define SHARP_GAP 600000
|
||||
#define SHARP_TOGGLE_MASK 0x3FF
|
||||
#define SHARP_RPT_SPACE 3000
|
||||
|
||||
#define DISH_HDR_MARK 400
|
||||
#define DISH_HDR_SPACE 6100
|
||||
#define DISH_BIT_MARK 400
|
||||
#define DISH_ONE_SPACE 1700
|
||||
#define DISH_ZERO_SPACE 2800
|
||||
#define DISH_RPT_SPACE 6200
|
||||
#define DISH_TOP_BIT 0x8000
|
||||
|
||||
#define PANASONIC_HDR_MARK 3502
|
||||
#define PANASONIC_HDR_SPACE 1750
|
||||
#define PANASONIC_BIT_MARK 502
|
||||
#define PANASONIC_ONE_SPACE 1244
|
||||
#define PANASONIC_ZERO_SPACE 400
|
||||
|
||||
#define JVC_HDR_MARK 8000
|
||||
#define JVC_HDR_SPACE 4000
|
||||
#define JVC_BIT_MARK 600
|
||||
#define JVC_ONE_SPACE 1600
|
||||
#define JVC_ZERO_SPACE 550
|
||||
#define JVC_RPT_LENGTH 60000
|
||||
|
||||
#define SHARP_BITS 15
|
||||
#define DISH_BITS 16
|
||||
|
||||
#define TOLERANCE 25 // percent tolerance in measurements
|
||||
#define LTOL (1.0 - TOLERANCE/100.)
|
||||
#define UTOL (1.0 + TOLERANCE/100.)
|
||||
|
||||
#define _GAP 5000 // Minimum map between transmissions
|
||||
#define GAP_TICKS (_GAP/USECPERTICK)
|
||||
|
||||
#define TICKS_LOW(us) (int) (((us)*LTOL/USECPERTICK))
|
||||
#define TICKS_HIGH(us) (int) (((us)*UTOL/USECPERTICK + 1))
|
||||
|
||||
#ifndef DEBUG
|
||||
int MATCH(int measured, int desired) {return measured >= TICKS_LOW(desired) && measured <= TICKS_HIGH(desired);}
|
||||
int MATCH_MARK(int measured_ticks, int desired_us) {return MATCH(measured_ticks, (desired_us + MARK_EXCESS));}
|
||||
int MATCH_SPACE(int measured_ticks, int desired_us) {return MATCH(measured_ticks, (desired_us - MARK_EXCESS));}
|
||||
// Debugging versions are in IRremote.cpp
|
||||
#endif
|
||||
|
||||
// receiver states
|
||||
#define STATE_IDLE 2
|
||||
#define STATE_MARK 3
|
||||
#define STATE_SPACE 4
|
||||
#define STATE_STOP 5
|
||||
|
||||
// information for the interrupt handler
|
||||
typedef struct {
|
||||
uint8_t recvpin; // pin for IR data from detector
|
||||
uint8_t rcvstate; // state machine
|
||||
uint8_t blinkflag; // TRUE to enable blinking of pin 13 on IR processing
|
||||
unsigned int timer; // state timer, counts 50uS ticks.
|
||||
unsigned int rawbuf[RAWBUF]; // raw data
|
||||
uint8_t rawlen; // counter of entries in rawbuf
|
||||
}
|
||||
irparams_t;
|
||||
|
||||
// Defined in IRremote.cpp
|
||||
extern volatile irparams_t irparams;
|
||||
|
||||
// IR detector output is active low
|
||||
#define MARK 0
|
||||
#define SPACE 1
|
||||
|
||||
#define TOPBIT 0x80000000
|
||||
|
||||
#define NEC_BITS 32
|
||||
#define SONY_BITS 12
|
||||
#define SANYO_BITS 12
|
||||
#define MITSUBISHI_BITS 16
|
||||
#define MIN_RC5_SAMPLES 11
|
||||
#define MIN_RC6_SAMPLES 1
|
||||
#define PANASONIC_BITS 48
|
||||
#define JVC_BITS 16
|
||||
|
||||
|
||||
|
||||
|
||||
// defines for timer2 (8 bits)
|
||||
#if defined(IR_USE_TIMER2)
|
||||
#define TIMER_RESET
|
||||
#define TIMER_ENABLE_PWM (TCCR2A |= _BV(COM2B1))
|
||||
#define TIMER_DISABLE_PWM (TCCR2A &= ~(_BV(COM2B1)))
|
||||
#define TIMER_ENABLE_INTR (TIMSK2 = _BV(OCIE2A))
|
||||
#define TIMER_DISABLE_INTR (TIMSK2 = 0)
|
||||
#define TIMER_INTR_NAME TIMER2_COMPA_vect
|
||||
#define TIMER_CONFIG_KHZ(val) ({ \
|
||||
const uint8_t pwmval = SYSCLOCK / 2000 / (val); \
|
||||
TCCR2A = _BV(WGM20); \
|
||||
TCCR2B = _BV(WGM22) | _BV(CS20); \
|
||||
OCR2A = pwmval; \
|
||||
OCR2B = pwmval / 3; \
|
||||
})
|
||||
#define TIMER_COUNT_TOP (SYSCLOCK * USECPERTICK / 1000000)
|
||||
#if (TIMER_COUNT_TOP < 256)
|
||||
#define TIMER_CONFIG_NORMAL() ({ \
|
||||
TCCR2A = _BV(WGM21); \
|
||||
TCCR2B = _BV(CS20); \
|
||||
OCR2A = TIMER_COUNT_TOP; \
|
||||
TCNT2 = 0; \
|
||||
})
|
||||
#else
|
||||
#define TIMER_CONFIG_NORMAL() ({ \
|
||||
TCCR2A = _BV(WGM21); \
|
||||
TCCR2B = _BV(CS21); \
|
||||
OCR2A = TIMER_COUNT_TOP / 8; \
|
||||
TCNT2 = 0; \
|
||||
})
|
||||
#endif
|
||||
#if defined(CORE_OC2B_PIN)
|
||||
#define TIMER_PWM_PIN CORE_OC2B_PIN /* Teensy */
|
||||
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
|
||||
#define TIMER_PWM_PIN 9 /* Arduino Mega */
|
||||
#elif defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644__)
|
||||
#define TIMER_PWM_PIN 14 /* Sanguino */
|
||||
#else
|
||||
#define TIMER_PWM_PIN 3 /* Arduino Duemilanove, Diecimila, LilyPad, etc */
|
||||
#endif
|
||||
|
||||
|
||||
// defines for timer1 (16 bits)
|
||||
#elif defined(IR_USE_TIMER1)
|
||||
#define TIMER_RESET
|
||||
#define TIMER_ENABLE_PWM (TCCR1A |= _BV(COM1A1))
|
||||
#define TIMER_DISABLE_PWM (TCCR1A &= ~(_BV(COM1A1)))
|
||||
#if defined(__AVR_ATmega8P__) || defined(__AVR_ATmega8__)
|
||||
#define TIMER_ENABLE_INTR (TIMSK = _BV(OCIE1A))
|
||||
#define TIMER_DISABLE_INTR (TIMSK = 0)
|
||||
#else
|
||||
#define TIMER_ENABLE_INTR (TIMSK1 = _BV(OCIE1A))
|
||||
#define TIMER_DISABLE_INTR (TIMSK1 = 0)
|
||||
#endif
|
||||
|
||||
#if defined(__AVR_ATtinyX4__)
|
||||
#define TIMER_INTR_NAME TIM1_COMPA_vect
|
||||
#else
|
||||
#define TIMER_INTR_NAME TIMER1_COMPA_vect
|
||||
#endif
|
||||
|
||||
#define TIMER_CONFIG_KHZ(val) ({ \
|
||||
const uint16_t pwmval = SYSCLOCK / 2000 / (val); \
|
||||
TCCR1A = _BV(WGM11); \
|
||||
TCCR1B = _BV(WGM13) | _BV(CS10); \
|
||||
ICR1 = pwmval; \
|
||||
OCR1A = pwmval / 3; \
|
||||
})
|
||||
#define TIMER_CONFIG_NORMAL() ({ \
|
||||
TCCR1A = 0; \
|
||||
TCCR1B = _BV(WGM12) | _BV(CS10); \
|
||||
OCR1A = SYSCLOCK * USECPERTICK / 1000000; \
|
||||
TCNT1 = 0; \
|
||||
})
|
||||
#if defined(CORE_OC1A_PIN)
|
||||
#define TIMER_PWM_PIN CORE_OC1A_PIN /* Teensy */
|
||||
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
|
||||
#define TIMER_PWM_PIN 11 /* Arduino Mega */
|
||||
#elif defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644__)
|
||||
#define TIMER_PWM_PIN 13 /* Sanguino */
|
||||
#elif defined(__AVR_ATtinyX4__)
|
||||
#define TIMER_PWM_PIN 6 /* ATTiny84 */
|
||||
#else
|
||||
#define TIMER_PWM_PIN 9 /* Arduino Duemilanove, Diecimila, LilyPad, etc */
|
||||
#endif
|
||||
|
||||
|
||||
// defines for timer3 (16 bits)
|
||||
#elif defined(IR_USE_TIMER3)
|
||||
#define TIMER_RESET
|
||||
#define TIMER_ENABLE_PWM (TCCR3A |= _BV(COM3A1))
|
||||
#define TIMER_DISABLE_PWM (TCCR3A &= ~(_BV(COM3A1)))
|
||||
#define TIMER_ENABLE_INTR (TIMSK3 = _BV(OCIE3A))
|
||||
#define TIMER_DISABLE_INTR (TIMSK3 = 0)
|
||||
#define TIMER_INTR_NAME TIMER3_COMPA_vect
|
||||
#define TIMER_CONFIG_KHZ(val) ({ \
|
||||
const uint16_t pwmval = SYSCLOCK / 2000 / (val); \
|
||||
TCCR3A = _BV(WGM31); \
|
||||
TCCR3B = _BV(WGM33) | _BV(CS30); \
|
||||
ICR3 = pwmval; \
|
||||
OCR3A = pwmval / 3; \
|
||||
})
|
||||
#define TIMER_CONFIG_NORMAL() ({ \
|
||||
TCCR3A = 0; \
|
||||
TCCR3B = _BV(WGM32) | _BV(CS30); \
|
||||
OCR3A = SYSCLOCK * USECPERTICK / 1000000; \
|
||||
TCNT3 = 0; \
|
||||
})
|
||||
#if defined(CORE_OC3A_PIN)
|
||||
#define TIMER_PWM_PIN CORE_OC3A_PIN /* Teensy */
|
||||
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
|
||||
#define TIMER_PWM_PIN 5 /* Arduino Mega */
|
||||
#else
|
||||
#error "Please add OC3A pin number here\n"
|
||||
#endif
|
||||
|
||||
|
||||
// defines for timer4 (10 bits, high speed option)
|
||||
#elif defined(IR_USE_TIMER4_HS)
|
||||
#define TIMER_RESET
|
||||
#define TIMER_ENABLE_PWM (TCCR4A |= _BV(COM4A1))
|
||||
#define TIMER_DISABLE_PWM (TCCR4A &= ~(_BV(COM4A1)))
|
||||
#define TIMER_ENABLE_INTR (TIMSK4 = _BV(TOIE4))
|
||||
#define TIMER_DISABLE_INTR (TIMSK4 = 0)
|
||||
#define TIMER_INTR_NAME TIMER4_OVF_vect
|
||||
#define TIMER_CONFIG_KHZ(val) ({ \
|
||||
const uint16_t pwmval = SYSCLOCK / 2000 / (val); \
|
||||
TCCR4A = (1<<PWM4A); \
|
||||
TCCR4B = _BV(CS40); \
|
||||
TCCR4C = 0; \
|
||||
TCCR4D = (1<<WGM40); \
|
||||
TCCR4E = 0; \
|
||||
TC4H = pwmval >> 8; \
|
||||
OCR4C = pwmval; \
|
||||
TC4H = (pwmval / 3) >> 8; \
|
||||
OCR4A = (pwmval / 3) & 255; \
|
||||
})
|
||||
#define TIMER_CONFIG_NORMAL() ({ \
|
||||
TCCR4A = 0; \
|
||||
TCCR4B = _BV(CS40); \
|
||||
TCCR4C = 0; \
|
||||
TCCR4D = 0; \
|
||||
TCCR4E = 0; \
|
||||
TC4H = (SYSCLOCK * USECPERTICK / 1000000) >> 8; \
|
||||
OCR4C = (SYSCLOCK * USECPERTICK / 1000000) & 255; \
|
||||
TC4H = 0; \
|
||||
TCNT4 = 0; \
|
||||
})
|
||||
#if defined(CORE_OC4A_PIN)
|
||||
#define TIMER_PWM_PIN CORE_OC4A_PIN /* Teensy */
|
||||
#elif defined(__AVR_ATmega32U4__)
|
||||
#define TIMER_PWM_PIN 13 /* Leonardo */
|
||||
#else
|
||||
#error "Please add OC4A pin number here\n"
|
||||
#endif
|
||||
|
||||
|
||||
// defines for timer4 (16 bits)
|
||||
#elif defined(IR_USE_TIMER4)
|
||||
#define TIMER_RESET
|
||||
#define TIMER_ENABLE_PWM (TCCR4A |= _BV(COM4A1))
|
||||
#define TIMER_DISABLE_PWM (TCCR4A &= ~(_BV(COM4A1)))
|
||||
#define TIMER_ENABLE_INTR (TIMSK4 = _BV(OCIE4A))
|
||||
#define TIMER_DISABLE_INTR (TIMSK4 = 0)
|
||||
#define TIMER_INTR_NAME TIMER4_COMPA_vect
|
||||
#define TIMER_CONFIG_KHZ(val) ({ \
|
||||
const uint16_t pwmval = SYSCLOCK / 2000 / (val); \
|
||||
TCCR4A = _BV(WGM41); \
|
||||
TCCR4B = _BV(WGM43) | _BV(CS40); \
|
||||
ICR4 = pwmval; \
|
||||
OCR4A = pwmval / 3; \
|
||||
})
|
||||
#define TIMER_CONFIG_NORMAL() ({ \
|
||||
TCCR4A = 0; \
|
||||
TCCR4B = _BV(WGM42) | _BV(CS40); \
|
||||
OCR4A = SYSCLOCK * USECPERTICK / 1000000; \
|
||||
TCNT4 = 0; \
|
||||
})
|
||||
#if defined(CORE_OC4A_PIN)
|
||||
#define TIMER_PWM_PIN CORE_OC4A_PIN
|
||||
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
|
||||
#define TIMER_PWM_PIN 6 /* Arduino Mega */
|
||||
#else
|
||||
#error "Please add OC4A pin number here\n"
|
||||
#endif
|
||||
|
||||
|
||||
// defines for timer5 (16 bits)
|
||||
#elif defined(IR_USE_TIMER5)
|
||||
#define TIMER_RESET
|
||||
#define TIMER_ENABLE_PWM (TCCR5A |= _BV(COM5A1))
|
||||
#define TIMER_DISABLE_PWM (TCCR5A &= ~(_BV(COM5A1)))
|
||||
#define TIMER_ENABLE_INTR (TIMSK5 = _BV(OCIE5A))
|
||||
#define TIMER_DISABLE_INTR (TIMSK5 = 0)
|
||||
#define TIMER_INTR_NAME TIMER5_COMPA_vect
|
||||
#define TIMER_CONFIG_KHZ(val) ({ \
|
||||
const uint16_t pwmval = SYSCLOCK / 2000 / (val); \
|
||||
TCCR5A = _BV(WGM51); \
|
||||
TCCR5B = _BV(WGM53) | _BV(CS50); \
|
||||
ICR5 = pwmval; \
|
||||
OCR5A = pwmval / 3; \
|
||||
})
|
||||
#define TIMER_CONFIG_NORMAL() ({ \
|
||||
TCCR5A = 0; \
|
||||
TCCR5B = _BV(WGM52) | _BV(CS50); \
|
||||
OCR5A = SYSCLOCK * USECPERTICK / 1000000; \
|
||||
TCNT5 = 0; \
|
||||
})
|
||||
#if defined(CORE_OC5A_PIN)
|
||||
#define TIMER_PWM_PIN CORE_OC5A_PIN
|
||||
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
|
||||
#define TIMER_PWM_PIN 46 /* Arduino Mega */
|
||||
#else
|
||||
#error "Please add OC5A pin number here\n"
|
||||
#endif
|
||||
|
||||
|
||||
#else // unknown timer
|
||||
#error "Internal code configuration error, no known IR_USE_TIMER# defined\n"
|
||||
#endif
|
||||
|
||||
|
||||
// defines for blinking the LED
|
||||
#if defined(CORE_LED0_PIN)
|
||||
#define BLINKLED CORE_LED0_PIN
|
||||
#define BLINKLED_ON() (digitalWrite(CORE_LED0_PIN, HIGH))
|
||||
#define BLINKLED_OFF() (digitalWrite(CORE_LED0_PIN, LOW))
|
||||
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
|
||||
#define BLINKLED 13
|
||||
#define BLINKLED_ON() (PORTB |= B10000000)
|
||||
#define BLINKLED_OFF() (PORTB &= B01111111)
|
||||
#elif defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644__)
|
||||
#define BLINKLED 0
|
||||
#define BLINKLED_ON() (PORTD |= B00000001)
|
||||
#define BLINKLED_OFF() (PORTD &= B11111110)
|
||||
#else
|
||||
#define BLINKLED 13
|
||||
#define BLINKLED_ON() (PORTB |= B00100000)
|
||||
#define BLINKLED_OFF() (PORTB &= B11011111)
|
||||
#endif
|
||||
|
||||
#endif
|
||||
@@ -1,458 +0,0 @@
|
||||
|
||||
GNU LESSER GENERAL PUBLIC LICENSE
|
||||
Version 2.1, February 1999
|
||||
|
||||
Copyright (C) 1991, 1999 Free Software Foundation, Inc.
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
Everyone is permitted to copy and distribute verbatim copies
|
||||
of this license document, but changing it is not allowed.
|
||||
|
||||
[This is the first released version of the Lesser GPL. It also counts
|
||||
as the successor of the GNU Library Public License, version 2, hence
|
||||
the version number 2.1.]
|
||||
|
||||
Preamble
|
||||
|
||||
The licenses for most software are designed to take away your
|
||||
freedom to share and change it. By contrast, the GNU General Public
|
||||
Licenses are intended to guarantee your freedom to share and change
|
||||
free software--to make sure the software is free for all its users.
|
||||
|
||||
This license, the Lesser General Public License, applies to some
|
||||
specially designated software packages--typically libraries--of the
|
||||
Free Software Foundation and other authors who decide to use it. You
|
||||
can use it too, but we suggest you first think carefully about whether
|
||||
this license or the ordinary General Public License is the better
|
||||
strategy to use in any particular case, based on the explanations below.
|
||||
|
||||
When we speak of free software, we are referring to freedom of use,
|
||||
not price. Our General Public Licenses are designed to make sure that
|
||||
you have the freedom to distribute copies of free software (and charge
|
||||
for this service if you wish); that you receive source code or can get
|
||||
it if you want it; that you can change the software and use pieces of
|
||||
it in new free programs; and that you are informed that you can do
|
||||
these things.
|
||||
|
||||
To protect your rights, we need to make restrictions that forbid
|
||||
distributors to deny you these rights or to ask you to surrender these
|
||||
rights. These restrictions translate to certain responsibilities for
|
||||
you if you distribute copies of the library or if you modify it.
|
||||
|
||||
For example, if you distribute copies of the library, whether gratis
|
||||
or for a fee, you must give the recipients all the rights that we gave
|
||||
you. You must make sure that they, too, receive or can get the source
|
||||
code. If you link other code with the library, you must provide
|
||||
complete object files to the recipients, so that they can relink them
|
||||
with the library after making changes to the library and recompiling
|
||||
it. And you must show them these terms so they know their rights.
|
||||
|
||||
We protect your rights with a two-step method: (1) we copyright the
|
||||
library, and (2) we offer you this license, which gives you legal
|
||||
permission to copy, distribute and/or modify the library.
|
||||
|
||||
To protect each distributor, we want to make it very clear that
|
||||
there is no warranty for the free library. Also, if the library is
|
||||
modified by someone else and passed on, the recipients should know
|
||||
that what they have is not the original version, so that the original
|
||||
author's reputation will not be affected by problems that might be
|
||||
introduced by others.
|
||||
|
||||
Finally, software patents pose a constant threat to the existence of
|
||||
any free program. We wish to make sure that a company cannot
|
||||
effectively restrict the users of a free program by obtaining a
|
||||
restrictive license from a patent holder. Therefore, we insist that
|
||||
any patent license obtained for a version of the library must be
|
||||
consistent with the full freedom of use specified in this license.
|
||||
|
||||
Most GNU software, including some libraries, is covered by the
|
||||
ordinary GNU General Public License. This license, the GNU Lesser
|
||||
General Public License, applies to certain designated libraries, and
|
||||
is quite different from the ordinary General Public License. We use
|
||||
this license for certain libraries in order to permit linking those
|
||||
libraries into non-free programs.
|
||||
|
||||
When a program is linked with a library, whether statically or using
|
||||
a shared library, the combination of the two is legally speaking a
|
||||
combined work, a derivative of the original library. The ordinary
|
||||
General Public License therefore permits such linking only if the
|
||||
entire combination fits its criteria of freedom. The Lesser General
|
||||
Public License permits more lax criteria for linking other code with
|
||||
the library.
|
||||
|
||||
We call this license the "Lesser" General Public License because it
|
||||
does Less to protect the user's freedom than the ordinary General
|
||||
Public License. It also provides other free software developers Less
|
||||
of an advantage over competing non-free programs. These disadvantages
|
||||
are the reason we use the ordinary General Public License for many
|
||||
libraries. However, the Lesser license provides advantages in certain
|
||||
special circumstances.
|
||||
|
||||
For example, on rare occasions, there may be a special need to
|
||||
encourage the widest possible use of a certain library, so that it becomes
|
||||
a de-facto standard. To achieve this, non-free programs must be
|
||||
allowed to use the library. A more frequent case is that a free
|
||||
library does the same job as widely used non-free libraries. In this
|
||||
case, there is little to gain by limiting the free library to free
|
||||
software only, so we use the Lesser General Public License.
|
||||
|
||||
In other cases, permission to use a particular library in non-free
|
||||
programs enables a greater number of people to use a large body of
|
||||
free software. For example, permission to use the GNU C Library in
|
||||
non-free programs enables many more people to use the whole GNU
|
||||
operating system, as well as its variant, the GNU/Linux operating
|
||||
system.
|
||||
|
||||
Although the Lesser General Public License is Less protective of the
|
||||
users' freedom, it does ensure that the user of a program that is
|
||||
linked with the Library has the freedom and the wherewithal to run
|
||||
that program using a modified version of the Library.
|
||||
|
||||
The precise terms and conditions for copying, distribution and
|
||||
modification follow. Pay close attention to the difference between a
|
||||
"work based on the library" and a "work that uses the library". The
|
||||
former contains code derived from the library, whereas the latter must
|
||||
be combined with the library in order to run.
|
||||
|
||||
GNU LESSER GENERAL PUBLIC LICENSE
|
||||
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
|
||||
|
||||
0. This License Agreement applies to any software library or other
|
||||
program which contains a notice placed by the copyright holder or
|
||||
other authorized party saying it may be distributed under the terms of
|
||||
this Lesser General Public License (also called "this License").
|
||||
Each licensee is addressed as "you".
|
||||
|
||||
A "library" means a collection of software functions and/or data
|
||||
prepared so as to be conveniently linked with application programs
|
||||
(which use some of those functions and data) to form executables.
|
||||
|
||||
The "Library", below, refers to any such software library or work
|
||||
which has been distributed under these terms. A "work based on the
|
||||
Library" means either the Library or any derivative work under
|
||||
copyright law: that is to say, a work containing the Library or a
|
||||
portion of it, either verbatim or with modifications and/or translated
|
||||
straightforwardly into another language. (Hereinafter, translation is
|
||||
included without limitation in the term "modification".)
|
||||
|
||||
"Source code" for a work means the preferred form of the work for
|
||||
making modifications to it. For a library, complete source code means
|
||||
all the source code for all modules it contains, plus any associated
|
||||
interface definition files, plus the scripts used to control compilation
|
||||
and installation of the library.
|
||||
|
||||
Activities other than copying, distribution and modification are not
|
||||
covered by this License; they are outside its scope. The act of
|
||||
running a program using the Library is not restricted, and output from
|
||||
such a program is covered only if its contents constitute a work based
|
||||
on the Library (independent of the use of the Library in a tool for
|
||||
writing it). Whether that is true depends on what the Library does
|
||||
and what the program that uses the Library does.
|
||||
|
||||
1. You may copy and distribute verbatim copies of the Library's
|
||||
complete source code as you receive it, in any medium, provided that
|
||||
you conspicuously and appropriately publish on each copy an
|
||||
appropriate copyright notice and disclaimer of warranty; keep intact
|
||||
all the notices that refer to this License and to the absence of any
|
||||
warranty; and distribute a copy of this License along with the
|
||||
Library.
|
||||
|
||||
You may charge a fee for the physical act of transferring a copy,
|
||||
and you may at your option offer warranty protection in exchange for a
|
||||
fee.
|
||||
|
||||
2. You may modify your copy or copies of the Library or any portion
|
||||
of it, thus forming a work based on the Library, and copy and
|
||||
distribute such modifications or work under the terms of Section 1
|
||||
above, provided that you also meet all of these conditions:
|
||||
|
||||
a) The modified work must itself be a software library.
|
||||
|
||||
b) You must cause the files modified to carry prominent notices
|
||||
stating that you changed the files and the date of any change.
|
||||
|
||||
c) You must cause the whole of the work to be licensed at no
|
||||
charge to all third parties under the terms of this License.
|
||||
|
||||
d) If a facility in the modified Library refers to a function or a
|
||||
table of data to be supplied by an application program that uses
|
||||
the facility, other than as an argument passed when the facility
|
||||
is invoked, then you must make a good faith effort to ensure that,
|
||||
in the event an application does not supply such function or
|
||||
table, the facility still operates, and performs whatever part of
|
||||
its purpose remains meaningful.
|
||||
|
||||
(For example, a function in a library to compute square roots has
|
||||
a purpose that is entirely well-defined independent of the
|
||||
application. Therefore, Subsection 2d requires that any
|
||||
application-supplied function or table used by this function must
|
||||
be optional: if the application does not supply it, the square
|
||||
root function must still compute square roots.)
|
||||
|
||||
These requirements apply to the modified work as a whole. If
|
||||
identifiable sections of that work are not derived from the Library,
|
||||
and can be reasonably considered independent and separate works in
|
||||
themselves, then this License, and its terms, do not apply to those
|
||||
sections when you distribute them as separate works. But when you
|
||||
distribute the same sections as part of a whole which is a work based
|
||||
on the Library, the distribution of the whole must be on the terms of
|
||||
this License, whose permissions for other licensees extend to the
|
||||
entire whole, and thus to each and every part regardless of who wrote
|
||||
it.
|
||||
|
||||
Thus, it is not the intent of this section to claim rights or contest
|
||||
your rights to work written entirely by you; rather, the intent is to
|
||||
exercise the right to control the distribution of derivative or
|
||||
collective works based on the Library.
|
||||
|
||||
In addition, mere aggregation of another work not based on the Library
|
||||
with the Library (or with a work based on the Library) on a volume of
|
||||
a storage or distribution medium does not bring the other work under
|
||||
the scope of this License.
|
||||
|
||||
3. You may opt to apply the terms of the ordinary GNU General Public
|
||||
License instead of this License to a given copy of the Library. To do
|
||||
this, you must alter all the notices that refer to this License, so
|
||||
that they refer to the ordinary GNU General Public License, version 2,
|
||||
instead of to this License. (If a newer version than version 2 of the
|
||||
ordinary GNU General Public License has appeared, then you can specify
|
||||
that version instead if you wish.) Do not make any other change in
|
||||
these notices.
|
||||
|
||||
Once this change is made in a given copy, it is irreversible for
|
||||
that copy, so the ordinary GNU General Public License applies to all
|
||||
subsequent copies and derivative works made from that copy.
|
||||
|
||||
This option is useful when you wish to copy part of the code of
|
||||
the Library into a program that is not a library.
|
||||
|
||||
4. You may copy and distribute the Library (or a portion or
|
||||
derivative of it, under Section 2) in object code or executable form
|
||||
under the terms of Sections 1 and 2 above provided that you accompany
|
||||
it with the complete corresponding machine-readable source code, which
|
||||
must be distributed under the terms of Sections 1 and 2 above on a
|
||||
medium customarily used for software interchange.
|
||||
|
||||
If distribution of object code is made by offering access to copy
|
||||
from a designated place, then offering equivalent access to copy the
|
||||
source code from the same place satisfies the requirement to
|
||||
distribute the source code, even though third parties are not
|
||||
compelled to copy the source along with the object code.
|
||||
|
||||
5. A program that contains no derivative of any portion of the
|
||||
Library, but is designed to work with the Library by being compiled or
|
||||
linked with it, is called a "work that uses the Library". Such a
|
||||
work, in isolation, is not a derivative work of the Library, and
|
||||
therefore falls outside the scope of this License.
|
||||
|
||||
However, linking a "work that uses the Library" with the Library
|
||||
creates an executable that is a derivative of the Library (because it
|
||||
contains portions of the Library), rather than a "work that uses the
|
||||
library". The executable is therefore covered by this License.
|
||||
Section 6 states terms for distribution of such executables.
|
||||
|
||||
When a "work that uses the Library" uses material from a header file
|
||||
that is part of the Library, the object code for the work may be a
|
||||
derivative work of the Library even though the source code is not.
|
||||
Whether this is true is especially significant if the work can be
|
||||
linked without the Library, or if the work is itself a library. The
|
||||
threshold for this to be true is not precisely defined by law.
|
||||
|
||||
If such an object file uses only numerical parameters, data
|
||||
structure layouts and accessors, and small macros and small inline
|
||||
functions (ten lines or less in length), then the use of the object
|
||||
file is unrestricted, regardless of whether it is legally a derivative
|
||||
work. (Executables containing this object code plus portions of the
|
||||
Library will still fall under Section 6.)
|
||||
|
||||
Otherwise, if the work is a derivative of the Library, you may
|
||||
distribute the object code for the work under the terms of Section 6.
|
||||
Any executables containing that work also fall under Section 6,
|
||||
whether or not they are linked directly with the Library itself.
|
||||
|
||||
6. As an exception to the Sections above, you may also combine or
|
||||
link a "work that uses the Library" with the Library to produce a
|
||||
work containing portions of the Library, and distribute that work
|
||||
under terms of your choice, provided that the terms permit
|
||||
modification of the work for the customer's own use and reverse
|
||||
engineering for debugging such modifications.
|
||||
|
||||
You must give prominent notice with each copy of the work that the
|
||||
Library is used in it and that the Library and its use are covered by
|
||||
this License. You must supply a copy of this License. If the work
|
||||
during execution displays copyright notices, you must include the
|
||||
copyright notice for the Library among them, as well as a reference
|
||||
directing the user to the copy of this License. Also, you must do one
|
||||
of these things:
|
||||
|
||||
a) Accompany the work with the complete corresponding
|
||||
machine-readable source code for the Library including whatever
|
||||
changes were used in the work (which must be distributed under
|
||||
Sections 1 and 2 above); and, if the work is an executable linked
|
||||
with the Library, with the complete machine-readable "work that
|
||||
uses the Library", as object code and/or source code, so that the
|
||||
user can modify the Library and then relink to produce a modified
|
||||
executable containing the modified Library. (It is understood
|
||||
that the user who changes the contents of definitions files in the
|
||||
Library will not necessarily be able to recompile the application
|
||||
to use the modified definitions.)
|
||||
|
||||
b) Use a suitable shared library mechanism for linking with the
|
||||
Library. A suitable mechanism is one that (1) uses at run time a
|
||||
copy of the library already present on the user's computer system,
|
||||
rather than copying library functions into the executable, and (2)
|
||||
will operate properly with a modified version of the library, if
|
||||
the user installs one, as long as the modified version is
|
||||
interface-compatible with the version that the work was made with.
|
||||
|
||||
c) Accompany the work with a written offer, valid for at
|
||||
least three years, to give the same user the materials
|
||||
specified in Subsection 6a, above, for a charge no more
|
||||
than the cost of performing this distribution.
|
||||
|
||||
d) If distribution of the work is made by offering access to copy
|
||||
from a designated place, offer equivalent access to copy the above
|
||||
specified materials from the same place.
|
||||
|
||||
e) Verify that the user has already received a copy of these
|
||||
materials or that you have already sent this user a copy.
|
||||
|
||||
For an executable, the required form of the "work that uses the
|
||||
Library" must include any data and utility programs needed for
|
||||
reproducing the executable from it. However, as a special exception,
|
||||
the materials to be distributed need not include anything that is
|
||||
normally distributed (in either source or binary form) with the major
|
||||
components (compiler, kernel, and so on) of the operating system on
|
||||
which the executable runs, unless that component itself accompanies
|
||||
the executable.
|
||||
|
||||
It may happen that this requirement contradicts the license
|
||||
restrictions of other proprietary libraries that do not normally
|
||||
accompany the operating system. Such a contradiction means you cannot
|
||||
use both them and the Library together in an executable that you
|
||||
distribute.
|
||||
|
||||
7. You may place library facilities that are a work based on the
|
||||
Library side-by-side in a single library together with other library
|
||||
facilities not covered by this License, and distribute such a combined
|
||||
library, provided that the separate distribution of the work based on
|
||||
the Library and of the other library facilities is otherwise
|
||||
permitted, and provided that you do these two things:
|
||||
|
||||
a) Accompany the combined library with a copy of the same work
|
||||
based on the Library, uncombined with any other library
|
||||
facilities. This must be distributed under the terms of the
|
||||
Sections above.
|
||||
|
||||
b) Give prominent notice with the combined library of the fact
|
||||
that part of it is a work based on the Library, and explaining
|
||||
where to find the accompanying uncombined form of the same work.
|
||||
|
||||
8. You may not copy, modify, sublicense, link with, or distribute
|
||||
the Library except as expressly provided under this License. Any
|
||||
attempt otherwise to copy, modify, sublicense, link with, or
|
||||
distribute the Library is void, and will automatically terminate your
|
||||
rights under this License. However, parties who have received copies,
|
||||
or rights, from you under this License will not have their licenses
|
||||
terminated so long as such parties remain in full compliance.
|
||||
|
||||
9. You are not required to accept this License, since you have not
|
||||
signed it. However, nothing else grants you permission to modify or
|
||||
distribute the Library or its derivative works. These actions are
|
||||
prohibited by law if you do not accept this License. Therefore, by
|
||||
modifying or distributing the Library (or any work based on the
|
||||
Library), you indicate your acceptance of this License to do so, and
|
||||
all its terms and conditions for copying, distributing or modifying
|
||||
the Library or works based on it.
|
||||
|
||||
10. Each time you redistribute the Library (or any work based on the
|
||||
Library), the recipient automatically receives a license from the
|
||||
original licensor to copy, distribute, link with or modify the Library
|
||||
subject to these terms and conditions. You may not impose any further
|
||||
restrictions on the recipients' exercise of the rights granted herein.
|
||||
You are not responsible for enforcing compliance by third parties with
|
||||
this License.
|
||||
|
||||
11. If, as a consequence of a court judgment or allegation of patent
|
||||
infringement or for any other reason (not limited to patent issues),
|
||||
conditions are imposed on you (whether by court order, agreement or
|
||||
otherwise) that contradict the conditions of this License, they do not
|
||||
excuse you from the conditions of this License. If you cannot
|
||||
distribute so as to satisfy simultaneously your obligations under this
|
||||
License and any other pertinent obligations, then as a consequence you
|
||||
may not distribute the Library at all. For example, if a patent
|
||||
license would not permit royalty-free redistribution of the Library by
|
||||
all those who receive copies directly or indirectly through you, then
|
||||
the only way you could satisfy both it and this License would be to
|
||||
refrain entirely from distribution of the Library.
|
||||
|
||||
If any portion of this section is held invalid or unenforceable under any
|
||||
particular circumstance, the balance of the section is intended to apply,
|
||||
and the section as a whole is intended to apply in other circumstances.
|
||||
|
||||
It is not the purpose of this section to induce you to infringe any
|
||||
patents or other property right claims or to contest validity of any
|
||||
such claims; this section has the sole purpose of protecting the
|
||||
integrity of the free software distribution system which is
|
||||
implemented by public license practices. Many people have made
|
||||
generous contributions to the wide range of software distributed
|
||||
through that system in reliance on consistent application of that
|
||||
system; it is up to the author/donor to decide if he or she is willing
|
||||
to distribute software through any other system and a licensee cannot
|
||||
impose that choice.
|
||||
|
||||
This section is intended to make thoroughly clear what is believed to
|
||||
be a consequence of the rest of this License.
|
||||
|
||||
12. If the distribution and/or use of the Library is restricted in
|
||||
certain countries either by patents or by copyrighted interfaces, the
|
||||
original copyright holder who places the Library under this License may add
|
||||
an explicit geographical distribution limitation excluding those countries,
|
||||
so that distribution is permitted only in or among countries not thus
|
||||
excluded. In such case, this License incorporates the limitation as if
|
||||
written in the body of this License.
|
||||
|
||||
13. The Free Software Foundation may publish revised and/or new
|
||||
versions of the Lesser General Public License from time to time.
|
||||
Such new versions will be similar in spirit to the present version,
|
||||
but may differ in detail to address new problems or concerns.
|
||||
|
||||
Each version is given a distinguishing version number. If the Library
|
||||
specifies a version number of this License which applies to it and
|
||||
"any later version", you have the option of following the terms and
|
||||
conditions either of that version or of any later version published by
|
||||
the Free Software Foundation. If the Library does not specify a
|
||||
license version number, you may choose any version ever published by
|
||||
the Free Software Foundation.
|
||||
|
||||
14. If you wish to incorporate parts of the Library into other free
|
||||
programs whose distribution conditions are incompatible with these,
|
||||
write to the author to ask for permission. For software which is
|
||||
copyrighted by the Free Software Foundation, write to the Free
|
||||
Software Foundation; we sometimes make exceptions for this. Our
|
||||
decision will be guided by the two goals of preserving the free status
|
||||
of all derivatives of our free software and of promoting the sharing
|
||||
and reuse of software generally.
|
||||
|
||||
NO WARRANTY
|
||||
|
||||
15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
|
||||
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
|
||||
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
|
||||
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
|
||||
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
|
||||
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
|
||||
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
||||
|
||||
16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
|
||||
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
|
||||
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
|
||||
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
|
||||
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
|
||||
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
|
||||
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
|
||||
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
|
||||
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
|
||||
DAMAGES.
|
||||
|
||||
@@ -1,167 +0,0 @@
|
||||
/*
|
||||
* IRrecord: record and play back IR signals as a minimal
|
||||
* An IR detector/demodulator must be connected to the input RECV_PIN.
|
||||
* An IR LED must be connected to the output PWM pin 3.
|
||||
* A button must be connected to the input BUTTON_PIN; this is the
|
||||
* send button.
|
||||
* A visible LED can be connected to STATUS_PIN to provide status.
|
||||
*
|
||||
* The logic is:
|
||||
* If the button is pressed, send the IR code.
|
||||
* If an IR code is received, record it.
|
||||
*
|
||||
* Version 0.11 September, 2009
|
||||
* Copyright 2009 Ken Shirriff
|
||||
* http://arcfn.com
|
||||
*/
|
||||
|
||||
#include <IRremote.h>
|
||||
|
||||
int RECV_PIN = 11;
|
||||
int BUTTON_PIN = 12;
|
||||
int STATUS_PIN = 13;
|
||||
|
||||
IRrecv irrecv(RECV_PIN);
|
||||
IRsend irsend;
|
||||
|
||||
decode_results results;
|
||||
|
||||
void setup()
|
||||
{
|
||||
Serial.begin(9600);
|
||||
irrecv.enableIRIn(); // Start the receiver
|
||||
pinMode(BUTTON_PIN, INPUT);
|
||||
pinMode(STATUS_PIN, OUTPUT);
|
||||
}
|
||||
|
||||
// Storage for the recorded code
|
||||
int codeType = -1; // The type of code
|
||||
unsigned long codeValue; // The code value if not raw
|
||||
unsigned int rawCodes[RAWBUF]; // The durations if raw
|
||||
int codeLen; // The length of the code
|
||||
int toggle = 0; // The RC5/6 toggle state
|
||||
|
||||
// Stores the code for later playback
|
||||
// Most of this code is just logging
|
||||
void storeCode(decode_results *results) {
|
||||
codeType = results->decode_type;
|
||||
int count = results->rawlen;
|
||||
if (codeType == UNKNOWN) {
|
||||
Serial.println("Received unknown code, saving as raw");
|
||||
codeLen = results->rawlen - 1;
|
||||
// To store raw codes:
|
||||
// Drop first value (gap)
|
||||
// Convert from ticks to microseconds
|
||||
// Tweak marks shorter, and spaces longer to cancel out IR receiver distortion
|
||||
for (int i = 1; i <= codeLen; i++) {
|
||||
if (i % 2) {
|
||||
// Mark
|
||||
rawCodes[i - 1] = results->rawbuf[i]*USECPERTICK - MARK_EXCESS;
|
||||
Serial.print(" m");
|
||||
}
|
||||
else {
|
||||
// Space
|
||||
rawCodes[i - 1] = results->rawbuf[i]*USECPERTICK + MARK_EXCESS;
|
||||
Serial.print(" s");
|
||||
}
|
||||
Serial.print(rawCodes[i - 1], DEC);
|
||||
}
|
||||
Serial.println("");
|
||||
}
|
||||
else {
|
||||
if (codeType == NEC) {
|
||||
Serial.print("Received NEC: ");
|
||||
if (results->value == REPEAT) {
|
||||
// Don't record a NEC repeat value as that's useless.
|
||||
Serial.println("repeat; ignoring.");
|
||||
return;
|
||||
}
|
||||
}
|
||||
else if (codeType == SONY) {
|
||||
Serial.print("Received SONY: ");
|
||||
}
|
||||
else if (codeType == RC5) {
|
||||
Serial.print("Received RC5: ");
|
||||
}
|
||||
else if (codeType == RC6) {
|
||||
Serial.print("Received RC6: ");
|
||||
}
|
||||
else {
|
||||
Serial.print("Unexpected codeType ");
|
||||
Serial.print(codeType, DEC);
|
||||
Serial.println("");
|
||||
}
|
||||
Serial.println(results->value, HEX);
|
||||
codeValue = results->value;
|
||||
codeLen = results->bits;
|
||||
}
|
||||
}
|
||||
|
||||
void sendCode(int repeat) {
|
||||
if (codeType == NEC) {
|
||||
if (repeat) {
|
||||
irsend.sendNEC(REPEAT, codeLen);
|
||||
Serial.println("Sent NEC repeat");
|
||||
}
|
||||
else {
|
||||
irsend.sendNEC(codeValue, codeLen);
|
||||
Serial.print("Sent NEC ");
|
||||
Serial.println(codeValue, HEX);
|
||||
}
|
||||
}
|
||||
else if (codeType == SONY) {
|
||||
irsend.sendSony(codeValue, codeLen);
|
||||
Serial.print("Sent Sony ");
|
||||
Serial.println(codeValue, HEX);
|
||||
}
|
||||
else if (codeType == RC5 || codeType == RC6) {
|
||||
if (!repeat) {
|
||||
// Flip the toggle bit for a new button press
|
||||
toggle = 1 - toggle;
|
||||
}
|
||||
// Put the toggle bit into the code to send
|
||||
codeValue = codeValue & ~(1 << (codeLen - 1));
|
||||
codeValue = codeValue | (toggle << (codeLen - 1));
|
||||
if (codeType == RC5) {
|
||||
Serial.print("Sent RC5 ");
|
||||
Serial.println(codeValue, HEX);
|
||||
irsend.sendRC5(codeValue, codeLen);
|
||||
}
|
||||
else {
|
||||
irsend.sendRC6(codeValue, codeLen);
|
||||
Serial.print("Sent RC6 ");
|
||||
Serial.println(codeValue, HEX);
|
||||
}
|
||||
}
|
||||
else if (codeType == UNKNOWN /* i.e. raw */) {
|
||||
// Assume 38 KHz
|
||||
irsend.sendRaw(rawCodes, codeLen, 38);
|
||||
Serial.println("Sent raw");
|
||||
}
|
||||
}
|
||||
|
||||
int lastButtonState;
|
||||
|
||||
void loop() {
|
||||
// If button pressed, send the code.
|
||||
int buttonState = digitalRead(BUTTON_PIN);
|
||||
if (lastButtonState == HIGH && buttonState == LOW) {
|
||||
Serial.println("Released");
|
||||
irrecv.enableIRIn(); // Re-enable receiver
|
||||
}
|
||||
|
||||
if (buttonState) {
|
||||
Serial.println("Pressed, sending");
|
||||
digitalWrite(STATUS_PIN, HIGH);
|
||||
sendCode(lastButtonState == buttonState);
|
||||
digitalWrite(STATUS_PIN, LOW);
|
||||
delay(50); // Wait a bit between retransmissions
|
||||
}
|
||||
else if (irrecv.decode(&results)) {
|
||||
digitalWrite(STATUS_PIN, HIGH);
|
||||
storeCode(&results);
|
||||
irrecv.resume(); // resume receiver
|
||||
digitalWrite(STATUS_PIN, LOW);
|
||||
}
|
||||
lastButtonState = buttonState;
|
||||
}
|
||||
@@ -1,28 +0,0 @@
|
||||
/*
|
||||
* IRremote: IRrecvDemo - demonstrates receiving IR codes with IRrecv
|
||||
* An IR detector/demodulator must be connected to the input RECV_PIN.
|
||||
* Version 0.1 July, 2009
|
||||
* Copyright 2009 Ken Shirriff
|
||||
* http://arcfn.com
|
||||
*/
|
||||
|
||||
#include <IRremote.h>
|
||||
|
||||
int RECV_PIN = 11;
|
||||
|
||||
IRrecv irrecv(RECV_PIN);
|
||||
|
||||
decode_results results;
|
||||
|
||||
void setup()
|
||||
{
|
||||
Serial.begin(9600);
|
||||
irrecv.enableIRIn(); // Start the receiver
|
||||
}
|
||||
|
||||
void loop() {
|
||||
if (irrecv.decode(&results)) {
|
||||
Serial.println(results.value, HEX);
|
||||
irrecv.resume(); // Receive the next value
|
||||
}
|
||||
}
|
||||
@@ -1,81 +0,0 @@
|
||||
/*
|
||||
* IRremote: IRrecvDump - dump details of IR codes with IRrecv
|
||||
* An IR detector/demodulator must be connected to the input RECV_PIN.
|
||||
* Version 0.1 July, 2009
|
||||
* Copyright 2009 Ken Shirriff
|
||||
* http://arcfn.com
|
||||
* JVC and Panasonic protocol added by Kristian Lauszus (Thanks to zenwheel and other people at the original blog post)
|
||||
*/
|
||||
|
||||
#include <IRremote.h>
|
||||
|
||||
int RECV_PIN = 11;
|
||||
|
||||
IRrecv irrecv(RECV_PIN);
|
||||
|
||||
decode_results results;
|
||||
|
||||
void setup()
|
||||
{
|
||||
Serial.begin(9600);
|
||||
irrecv.enableIRIn(); // Start the receiver
|
||||
}
|
||||
|
||||
// Dumps out the decode_results structure.
|
||||
// Call this after IRrecv::decode()
|
||||
// void * to work around compiler issue
|
||||
//void dump(void *v) {
|
||||
// decode_results *results = (decode_results *)v
|
||||
void dump(decode_results *results) {
|
||||
int count = results->rawlen;
|
||||
if (results->decode_type == UNKNOWN) {
|
||||
Serial.print("Unknown encoding: ");
|
||||
}
|
||||
else if (results->decode_type == NEC) {
|
||||
Serial.print("Decoded NEC: ");
|
||||
}
|
||||
else if (results->decode_type == SONY) {
|
||||
Serial.print("Decoded SONY: ");
|
||||
}
|
||||
else if (results->decode_type == RC5) {
|
||||
Serial.print("Decoded RC5: ");
|
||||
}
|
||||
else if (results->decode_type == RC6) {
|
||||
Serial.print("Decoded RC6: ");
|
||||
}
|
||||
else if (results->decode_type == PANASONIC) {
|
||||
Serial.print("Decoded PANASONIC - Address: ");
|
||||
Serial.print(results->panasonicAddress,HEX);
|
||||
Serial.print(" Value: ");
|
||||
}
|
||||
else if (results->decode_type == JVC) {
|
||||
Serial.print("Decoded JVC: ");
|
||||
}
|
||||
Serial.print(results->value, HEX);
|
||||
Serial.print(" (");
|
||||
Serial.print(results->bits, DEC);
|
||||
Serial.println(" bits)");
|
||||
Serial.print("Raw (");
|
||||
Serial.print(count, DEC);
|
||||
Serial.print("): ");
|
||||
|
||||
for (int i = 0; i < count; i++) {
|
||||
if ((i % 2) == 1) {
|
||||
Serial.print(results->rawbuf[i]*USECPERTICK, DEC);
|
||||
}
|
||||
else {
|
||||
Serial.print(-(int)results->rawbuf[i]*USECPERTICK, DEC);
|
||||
}
|
||||
Serial.print(" ");
|
||||
}
|
||||
Serial.println("");
|
||||
}
|
||||
|
||||
|
||||
void loop() {
|
||||
if (irrecv.decode(&results)) {
|
||||
Serial.println(results.value, HEX);
|
||||
dump(&results);
|
||||
irrecv.resume(); // Receive the next value
|
||||
}
|
||||
}
|
||||
@@ -1,85 +0,0 @@
|
||||
/*
|
||||
* IRremote: IRrecvDemo - demonstrates receiving IR codes with IRrecv
|
||||
* An IR detector/demodulator must be connected to the input RECV_PIN.
|
||||
* Version 0.1 July, 2009
|
||||
* Copyright 2009 Ken Shirriff
|
||||
* http://arcfn.com
|
||||
*/
|
||||
|
||||
#include <IRremote.h>
|
||||
|
||||
int RECV_PIN = 11;
|
||||
int RELAY_PIN = 4;
|
||||
|
||||
IRrecv irrecv(RECV_PIN);
|
||||
decode_results results;
|
||||
|
||||
// Dumps out the decode_results structure.
|
||||
// Call this after IRrecv::decode()
|
||||
// void * to work around compiler issue
|
||||
//void dump(void *v) {
|
||||
// decode_results *results = (decode_results *)v
|
||||
void dump(decode_results *results) {
|
||||
int count = results->rawlen;
|
||||
if (results->decode_type == UNKNOWN) {
|
||||
Serial.println("Could not decode message");
|
||||
}
|
||||
else {
|
||||
if (results->decode_type == NEC) {
|
||||
Serial.print("Decoded NEC: ");
|
||||
}
|
||||
else if (results->decode_type == SONY) {
|
||||
Serial.print("Decoded SONY: ");
|
||||
}
|
||||
else if (results->decode_type == RC5) {
|
||||
Serial.print("Decoded RC5: ");
|
||||
}
|
||||
else if (results->decode_type == RC6) {
|
||||
Serial.print("Decoded RC6: ");
|
||||
}
|
||||
Serial.print(results->value, HEX);
|
||||
Serial.print(" (");
|
||||
Serial.print(results->bits, DEC);
|
||||
Serial.println(" bits)");
|
||||
}
|
||||
Serial.print("Raw (");
|
||||
Serial.print(count, DEC);
|
||||
Serial.print("): ");
|
||||
|
||||
for (int i = 0; i < count; i++) {
|
||||
if ((i % 2) == 1) {
|
||||
Serial.print(results->rawbuf[i]*USECPERTICK, DEC);
|
||||
}
|
||||
else {
|
||||
Serial.print(-(int)results->rawbuf[i]*USECPERTICK, DEC);
|
||||
}
|
||||
Serial.print(" ");
|
||||
}
|
||||
Serial.println("");
|
||||
}
|
||||
|
||||
void setup()
|
||||
{
|
||||
pinMode(RELAY_PIN, OUTPUT);
|
||||
pinMode(13, OUTPUT);
|
||||
Serial.begin(9600);
|
||||
irrecv.enableIRIn(); // Start the receiver
|
||||
}
|
||||
|
||||
int on = 0;
|
||||
unsigned long last = millis();
|
||||
|
||||
void loop() {
|
||||
if (irrecv.decode(&results)) {
|
||||
// If it's been at least 1/4 second since the last
|
||||
// IR received, toggle the relay
|
||||
if (millis() - last > 250) {
|
||||
on = !on;
|
||||
digitalWrite(RELAY_PIN, on ? HIGH : LOW);
|
||||
digitalWrite(13, on ? HIGH : LOW);
|
||||
dump(&results);
|
||||
}
|
||||
last = millis();
|
||||
irrecv.resume(); // Receive the next value
|
||||
}
|
||||
}
|
||||
@@ -1,25 +0,0 @@
|
||||
/*
|
||||
* IRremote: IRsendDemo - demonstrates sending IR codes with IRsend
|
||||
* An IR LED must be connected to Arduino PWM pin 3.
|
||||
* Version 0.1 July, 2009
|
||||
* Copyright 2009 Ken Shirriff
|
||||
* http://arcfn.com
|
||||
*/
|
||||
|
||||
#include <IRremote.h>
|
||||
|
||||
IRsend irsend;
|
||||
|
||||
void setup()
|
||||
{
|
||||
Serial.begin(9600);
|
||||
}
|
||||
|
||||
void loop() {
|
||||
if (Serial.read() != -1) {
|
||||
for (int i = 0; i < 3; i++) {
|
||||
irsend.sendSony(0xa90, 12); // Sony TV power code
|
||||
delay(40);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1,190 +0,0 @@
|
||||
/*
|
||||
* IRremote: IRtest unittest
|
||||
* Version 0.1 July, 2009
|
||||
* Copyright 2009 Ken Shirriff
|
||||
* http://arcfn.com
|
||||
*
|
||||
* Note: to run these tests, edit IRremote/IRremote.h to add "#define TEST"
|
||||
* You must then recompile the library by removing IRremote.o and restarting
|
||||
* the arduino IDE.
|
||||
*/
|
||||
|
||||
#include <IRremote.h>
|
||||
#include <IRremoteInt.h>
|
||||
|
||||
// Dumps out the decode_results structure.
|
||||
// Call this after IRrecv::decode()
|
||||
// void * to work around compiler issue
|
||||
//void dump(void *v) {
|
||||
// decode_results *results = (decode_results *)v
|
||||
void dump(decode_results *results) {
|
||||
int count = results->rawlen;
|
||||
if (results->decode_type == UNKNOWN) {
|
||||
Serial.println("Could not decode message");
|
||||
}
|
||||
else {
|
||||
if (results->decode_type == NEC) {
|
||||
Serial.print("Decoded NEC: ");
|
||||
}
|
||||
else if (results->decode_type == SONY) {
|
||||
Serial.print("Decoded SONY: ");
|
||||
}
|
||||
else if (results->decode_type == RC5) {
|
||||
Serial.print("Decoded RC5: ");
|
||||
}
|
||||
else if (results->decode_type == RC6) {
|
||||
Serial.print("Decoded RC6: ");
|
||||
}
|
||||
Serial.print(results->value, HEX);
|
||||
Serial.print(" (");
|
||||
Serial.print(results->bits, DEC);
|
||||
Serial.println(" bits)");
|
||||
}
|
||||
Serial.print("Raw (");
|
||||
Serial.print(count, DEC);
|
||||
Serial.print("): ");
|
||||
|
||||
for (int i = 0; i < count; i++) {
|
||||
if ((i % 2) == 1) {
|
||||
Serial.print(results->rawbuf[i]*USECPERTICK, DEC);
|
||||
}
|
||||
else {
|
||||
Serial.print(-(int)results->rawbuf[i]*USECPERTICK, DEC);
|
||||
}
|
||||
Serial.print(" ");
|
||||
}
|
||||
Serial.println("");
|
||||
}
|
||||
|
||||
IRrecv irrecv(0);
|
||||
decode_results results;
|
||||
|
||||
class IRsendDummy :
|
||||
public IRsend
|
||||
{
|
||||
public:
|
||||
// For testing, just log the marks/spaces
|
||||
#define SENDLOG_LEN 128
|
||||
int sendlog[SENDLOG_LEN];
|
||||
int sendlogcnt;
|
||||
IRsendDummy() :
|
||||
IRsend() {
|
||||
}
|
||||
void reset() {
|
||||
sendlogcnt = 0;
|
||||
}
|
||||
void mark(int time) {
|
||||
sendlog[sendlogcnt] = time;
|
||||
if (sendlogcnt < SENDLOG_LEN) sendlogcnt++;
|
||||
}
|
||||
void space(int time) {
|
||||
sendlog[sendlogcnt] = -time;
|
||||
if (sendlogcnt < SENDLOG_LEN) sendlogcnt++;
|
||||
}
|
||||
// Copies the dummy buf into the interrupt buf
|
||||
void useDummyBuf() {
|
||||
int last = SPACE;
|
||||
irparams.rcvstate = STATE_STOP;
|
||||
irparams.rawlen = 1; // Skip the gap
|
||||
for (int i = 0 ; i < sendlogcnt; i++) {
|
||||
if (sendlog[i] < 0) {
|
||||
if (last == MARK) {
|
||||
// New space
|
||||
irparams.rawbuf[irparams.rawlen++] = (-sendlog[i] - MARK_EXCESS) / USECPERTICK;
|
||||
last = SPACE;
|
||||
}
|
||||
else {
|
||||
// More space
|
||||
irparams.rawbuf[irparams.rawlen - 1] += -sendlog[i] / USECPERTICK;
|
||||
}
|
||||
}
|
||||
else if (sendlog[i] > 0) {
|
||||
if (last == SPACE) {
|
||||
// New mark
|
||||
irparams.rawbuf[irparams.rawlen++] = (sendlog[i] + MARK_EXCESS) / USECPERTICK;
|
||||
last = MARK;
|
||||
}
|
||||
else {
|
||||
// More mark
|
||||
irparams.rawbuf[irparams.rawlen - 1] += sendlog[i] / USECPERTICK;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (irparams.rawlen % 2) {
|
||||
irparams.rawlen--; // Remove trailing space
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
IRsendDummy irsenddummy;
|
||||
|
||||
void verify(unsigned long val, int bits, int type) {
|
||||
irsenddummy.useDummyBuf();
|
||||
irrecv.decode(&results);
|
||||
Serial.print("Testing ");
|
||||
Serial.print(val, HEX);
|
||||
if (results.value == val && results.bits == bits && results.decode_type == type) {
|
||||
Serial.println(": OK");
|
||||
}
|
||||
else {
|
||||
Serial.println(": Error");
|
||||
dump(&results);
|
||||
}
|
||||
}
|
||||
|
||||
void testNEC(unsigned long val, int bits) {
|
||||
irsenddummy.reset();
|
||||
irsenddummy.sendNEC(val, bits);
|
||||
verify(val, bits, NEC);
|
||||
}
|
||||
void testSony(unsigned long val, int bits) {
|
||||
irsenddummy.reset();
|
||||
irsenddummy.sendSony(val, bits);
|
||||
verify(val, bits, SONY);
|
||||
}
|
||||
void testRC5(unsigned long val, int bits) {
|
||||
irsenddummy.reset();
|
||||
irsenddummy.sendRC5(val, bits);
|
||||
verify(val, bits, RC5);
|
||||
}
|
||||
void testRC6(unsigned long val, int bits) {
|
||||
irsenddummy.reset();
|
||||
irsenddummy.sendRC6(val, bits);
|
||||
verify(val, bits, RC6);
|
||||
}
|
||||
|
||||
void test() {
|
||||
Serial.println("NEC tests");
|
||||
testNEC(0x00000000, 32);
|
||||
testNEC(0xffffffff, 32);
|
||||
testNEC(0xaaaaaaaa, 32);
|
||||
testNEC(0x55555555, 32);
|
||||
testNEC(0x12345678, 32);
|
||||
Serial.println("Sony tests");
|
||||
testSony(0xfff, 12);
|
||||
testSony(0x000, 12);
|
||||
testSony(0xaaa, 12);
|
||||
testSony(0x555, 12);
|
||||
testSony(0x123, 12);
|
||||
Serial.println("RC5 tests");
|
||||
testRC5(0xfff, 12);
|
||||
testRC5(0x000, 12);
|
||||
testRC5(0xaaa, 12);
|
||||
testRC5(0x555, 12);
|
||||
testRC5(0x123, 12);
|
||||
Serial.println("RC6 tests");
|
||||
testRC6(0xfffff, 20);
|
||||
testRC6(0x00000, 20);
|
||||
testRC6(0xaaaaa, 20);
|
||||
testRC6(0x55555, 20);
|
||||
testRC6(0x12345, 20);
|
||||
}
|
||||
|
||||
void setup()
|
||||
{
|
||||
Serial.begin(9600);
|
||||
test();
|
||||
}
|
||||
|
||||
void loop() {
|
||||
}
|
||||
@@ -1,290 +0,0 @@
|
||||
/*
|
||||
* Test send/receive functions of IRremote, using a pair of Arduinos.
|
||||
*
|
||||
* Arduino #1 should have an IR LED connected to the send pin (3).
|
||||
* Arduino #2 should have an IR detector/demodulator connected to the
|
||||
* receive pin (11) and a visible LED connected to pin 3.
|
||||
*
|
||||
* The cycle:
|
||||
* Arduino #1 will wait 2 seconds, then run through the tests.
|
||||
* It repeats this forever.
|
||||
* Arduino #2 will wait for at least one second of no signal
|
||||
* (to synchronize with #1). It will then wait for the same test
|
||||
* signals. It will log all the status to the serial port. It will
|
||||
* also indicate status through the LED, which will flash each time a test
|
||||
* is completed. If there is an error, it will light up for 5 seconds.
|
||||
*
|
||||
* The test passes if the LED flashes 19 times, pauses, and then repeats.
|
||||
* The test fails if the LED lights for 5 seconds.
|
||||
*
|
||||
* The test software automatically decides which board is the sender and which is
|
||||
* the receiver by looking for an input on the send pin, which will indicate
|
||||
* the sender. You should hook the serial port to the receiver for debugging.
|
||||
*
|
||||
* Copyright 2010 Ken Shirriff
|
||||
* http://arcfn.com
|
||||
*/
|
||||
|
||||
#include <IRremote.h>
|
||||
|
||||
int RECV_PIN = 11;
|
||||
int LED_PIN = 3;
|
||||
|
||||
IRrecv irrecv(RECV_PIN);
|
||||
IRsend irsend;
|
||||
|
||||
decode_results results;
|
||||
|
||||
#define RECEIVER 1
|
||||
#define SENDER 2
|
||||
#define ERROR 3
|
||||
|
||||
int mode;
|
||||
|
||||
void setup()
|
||||
{
|
||||
Serial.begin(9600);
|
||||
// Check RECV_PIN to decide if we're RECEIVER or SENDER
|
||||
if (digitalRead(RECV_PIN) == HIGH) {
|
||||
mode = RECEIVER;
|
||||
irrecv.enableIRIn();
|
||||
pinMode(LED_PIN, OUTPUT);
|
||||
digitalWrite(LED_PIN, LOW);
|
||||
Serial.println("Receiver mode");
|
||||
}
|
||||
else {
|
||||
mode = SENDER;
|
||||
Serial.println("Sender mode");
|
||||
}
|
||||
}
|
||||
|
||||
// Wait for the gap between tests, to synchronize with
|
||||
// the sender.
|
||||
// Specifically, wait for a signal followed by a gap of at last gap ms.
|
||||
void waitForGap(int gap) {
|
||||
Serial.println("Waiting for gap");
|
||||
while (1) {
|
||||
while (digitalRead(RECV_PIN) == LOW) {
|
||||
}
|
||||
unsigned long time = millis();
|
||||
while (digitalRead(RECV_PIN) == HIGH) {
|
||||
if (millis() - time > gap) {
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Dumps out the decode_results structure.
|
||||
// Call this after IRrecv::decode()
|
||||
void dump(decode_results *results) {
|
||||
int count = results->rawlen;
|
||||
if (results->decode_type == UNKNOWN) {
|
||||
Serial.println("Could not decode message");
|
||||
}
|
||||
else {
|
||||
if (results->decode_type == NEC) {
|
||||
Serial.print("Decoded NEC: ");
|
||||
}
|
||||
else if (results->decode_type == SONY) {
|
||||
Serial.print("Decoded SONY: ");
|
||||
}
|
||||
else if (results->decode_type == RC5) {
|
||||
Serial.print("Decoded RC5: ");
|
||||
}
|
||||
else if (results->decode_type == RC6) {
|
||||
Serial.print("Decoded RC6: ");
|
||||
}
|
||||
Serial.print(results->value, HEX);
|
||||
Serial.print(" (");
|
||||
Serial.print(results->bits, DEC);
|
||||
Serial.println(" bits)");
|
||||
}
|
||||
Serial.print("Raw (");
|
||||
Serial.print(count, DEC);
|
||||
Serial.print("): ");
|
||||
|
||||
for (int i = 0; i < count; i++) {
|
||||
if ((i % 2) == 1) {
|
||||
Serial.print(results->rawbuf[i]*USECPERTICK, DEC);
|
||||
}
|
||||
else {
|
||||
Serial.print(-(int)results->rawbuf[i]*USECPERTICK, DEC);
|
||||
}
|
||||
Serial.print(" ");
|
||||
}
|
||||
Serial.println("");
|
||||
}
|
||||
|
||||
|
||||
// Test send or receive.
|
||||
// If mode is SENDER, send a code of the specified type, value, and bits
|
||||
// If mode is RECEIVER, receive a code and verify that it is of the
|
||||
// specified type, value, and bits. For success, the LED is flashed;
|
||||
// for failure, the mode is set to ERROR.
|
||||
// The motivation behind this method is that the sender and the receiver
|
||||
// can do the same test calls, and the mode variable indicates whether
|
||||
// to send or receive.
|
||||
void test(char *label, int type, unsigned long value, int bits) {
|
||||
if (mode == SENDER) {
|
||||
Serial.println(label);
|
||||
if (type == NEC) {
|
||||
irsend.sendNEC(value, bits);
|
||||
}
|
||||
else if (type == SONY) {
|
||||
irsend.sendSony(value, bits);
|
||||
}
|
||||
else if (type == RC5) {
|
||||
irsend.sendRC5(value, bits);
|
||||
}
|
||||
else if (type == RC6) {
|
||||
irsend.sendRC6(value, bits);
|
||||
}
|
||||
else {
|
||||
Serial.print(label);
|
||||
Serial.println("Bad type!");
|
||||
}
|
||||
delay(200);
|
||||
}
|
||||
else if (mode == RECEIVER) {
|
||||
irrecv.resume(); // Receive the next value
|
||||
unsigned long max_time = millis() + 30000;
|
||||
Serial.print(label);
|
||||
|
||||
// Wait for decode or timeout
|
||||
while (!irrecv.decode(&results)) {
|
||||
if (millis() > max_time) {
|
||||
Serial.println("Timeout receiving data");
|
||||
mode = ERROR;
|
||||
return;
|
||||
}
|
||||
}
|
||||
if (type == results.decode_type && value == results.value && bits == results.bits) {
|
||||
Serial.println (": OK");
|
||||
digitalWrite(LED_PIN, HIGH);
|
||||
delay(20);
|
||||
digitalWrite(LED_PIN, LOW);
|
||||
}
|
||||
else {
|
||||
Serial.println(": BAD");
|
||||
dump(&results);
|
||||
mode = ERROR;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Test raw send or receive. This is similar to the test method,
|
||||
// except it send/receives raw data.
|
||||
void testRaw(char *label, unsigned int *rawbuf, int rawlen) {
|
||||
if (mode == SENDER) {
|
||||
Serial.println(label);
|
||||
irsend.sendRaw(rawbuf, rawlen, 38 /* kHz */);
|
||||
delay(200);
|
||||
}
|
||||
else if (mode == RECEIVER ) {
|
||||
irrecv.resume(); // Receive the next value
|
||||
unsigned long max_time = millis() + 30000;
|
||||
Serial.print(label);
|
||||
|
||||
// Wait for decode or timeout
|
||||
while (!irrecv.decode(&results)) {
|
||||
if (millis() > max_time) {
|
||||
Serial.println("Timeout receiving data");
|
||||
mode = ERROR;
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
// Received length has extra first element for gap
|
||||
if (rawlen != results.rawlen - 1) {
|
||||
Serial.print("Bad raw length ");
|
||||
Serial.println(results.rawlen, DEC);
|
||||
mode = ERROR;
|
||||
return;
|
||||
}
|
||||
for (int i = 0; i < rawlen; i++) {
|
||||
long got = results.rawbuf[i+1] * USECPERTICK;
|
||||
// Adjust for extra duration of marks
|
||||
if (i % 2 == 0) {
|
||||
got -= MARK_EXCESS;
|
||||
}
|
||||
else {
|
||||
got += MARK_EXCESS;
|
||||
}
|
||||
// See if close enough, within 25%
|
||||
if (rawbuf[i] * 1.25 < got || got * 1.25 < rawbuf[i]) {
|
||||
Serial.println(": BAD");
|
||||
dump(&results);
|
||||
mode = ERROR;
|
||||
return;
|
||||
}
|
||||
|
||||
}
|
||||
Serial.println (": OK");
|
||||
digitalWrite(LED_PIN, HIGH);
|
||||
delay(20);
|
||||
digitalWrite(LED_PIN, LOW);
|
||||
}
|
||||
}
|
||||
|
||||
// This is the raw data corresponding to NEC 0x12345678
|
||||
unsigned int sendbuf[] = { /* NEC format */
|
||||
9000, 4500,
|
||||
560, 560, 560, 560, 560, 560, 560, 1690, /* 1 */
|
||||
560, 560, 560, 560, 560, 1690, 560, 560, /* 2 */
|
||||
560, 560, 560, 560, 560, 1690, 560, 1690, /* 3 */
|
||||
560, 560, 560, 1690, 560, 560, 560, 560, /* 4 */
|
||||
560, 560, 560, 1690, 560, 560, 560, 1690, /* 5 */
|
||||
560, 560, 560, 1690, 560, 1690, 560, 560, /* 6 */
|
||||
560, 560, 560, 1690, 560, 1690, 560, 1690, /* 7 */
|
||||
560, 1690, 560, 560, 560, 560, 560, 560, /* 8 */
|
||||
560};
|
||||
|
||||
void loop() {
|
||||
if (mode == SENDER) {
|
||||
delay(2000); // Delay for more than gap to give receiver a better chance to sync.
|
||||
}
|
||||
else if (mode == RECEIVER) {
|
||||
waitForGap(1000);
|
||||
}
|
||||
else if (mode == ERROR) {
|
||||
// Light up for 5 seconds for error
|
||||
digitalWrite(LED_PIN, HIGH);
|
||||
delay(5000);
|
||||
digitalWrite(LED_PIN, LOW);
|
||||
mode = RECEIVER; // Try again
|
||||
return;
|
||||
}
|
||||
|
||||
// The test suite.
|
||||
test("SONY1", SONY, 0x123, 12);
|
||||
test("SONY2", SONY, 0x000, 12);
|
||||
test("SONY3", SONY, 0xfff, 12);
|
||||
test("SONY4", SONY, 0x12345, 20);
|
||||
test("SONY5", SONY, 0x00000, 20);
|
||||
test("SONY6", SONY, 0xfffff, 20);
|
||||
test("NEC1", NEC, 0x12345678, 32);
|
||||
test("NEC2", NEC, 0x00000000, 32);
|
||||
test("NEC3", NEC, 0xffffffff, 32);
|
||||
test("NEC4", NEC, REPEAT, 32);
|
||||
test("RC51", RC5, 0x12345678, 32);
|
||||
test("RC52", RC5, 0x0, 32);
|
||||
test("RC53", RC5, 0xffffffff, 32);
|
||||
test("RC61", RC6, 0x12345678, 32);
|
||||
test("RC62", RC6, 0x0, 32);
|
||||
test("RC63", RC6, 0xffffffff, 32);
|
||||
|
||||
// Tests of raw sending and receiving.
|
||||
// First test sending raw and receiving raw.
|
||||
// Then test sending raw and receiving decoded NEC
|
||||
// Then test sending NEC and receiving raw
|
||||
testRaw("RAW1", sendbuf, 67);
|
||||
if (mode == SENDER) {
|
||||
testRaw("RAW2", sendbuf, 67);
|
||||
test("RAW3", NEC, 0x12345678, 32);
|
||||
}
|
||||
else {
|
||||
test("RAW2", NEC, 0x12345678, 32);
|
||||
testRaw("RAW3", sendbuf, 67);
|
||||
}
|
||||
}
|
||||
@@ -1,29 +0,0 @@
|
||||
/*
|
||||
* IRremote: IRsendDemo - demonstrates sending IR codes with IRsend
|
||||
* An IR LED must be connected to Arduino PWM pin 3.
|
||||
* Version 0.1 July, 2009
|
||||
* Copyright 2009 Ken Shirriff
|
||||
* http://arcfn.com
|
||||
* JVC and Panasonic protocol added by Kristian Lauszus (Thanks to zenwheel and other people at the original blog post)
|
||||
*/
|
||||
#include <IRremote.h>
|
||||
|
||||
#define PanasonicAddress 0x4004 // Panasonic address (Pre data)
|
||||
#define PanasonicPower 0x100BCBD // Panasonic Power button
|
||||
|
||||
#define JVCPower 0xC5E8
|
||||
|
||||
IRsend irsend;
|
||||
|
||||
void setup()
|
||||
{
|
||||
}
|
||||
|
||||
void loop() {
|
||||
irsend.sendPanasonic(PanasonicAddress,PanasonicPower); // This should turn your TV on and off
|
||||
|
||||
irsend.sendJVC(JVCPower, 16,0); // hex value, 16 bits, no repeat
|
||||
delayMicroseconds(50); // see http://www.sbprojects.com/knowledge/ir/jvc.php for information
|
||||
irsend.sendJVC(JVCPower, 16,1); // hex value, 16 bits, repeat
|
||||
delayMicroseconds(50);
|
||||
}
|
||||
@@ -1,50 +0,0 @@
|
||||
#######################################
|
||||
# Syntax Coloring Map For IRremote
|
||||
#######################################
|
||||
|
||||
#######################################
|
||||
# Datatypes (KEYWORD1)
|
||||
#######################################
|
||||
|
||||
decode_results KEYWORD1
|
||||
IRrecv KEYWORD1
|
||||
IRsend KEYWORD1
|
||||
|
||||
#######################################
|
||||
# Methods and Functions (KEYWORD2)
|
||||
#######################################
|
||||
|
||||
blink13 KEYWORD2
|
||||
decode KEYWORD2
|
||||
enableIRIn KEYWORD2
|
||||
resume KEYWORD2
|
||||
enableIROut KEYWORD2
|
||||
sendNEC KEYWORD2
|
||||
sendSony KEYWORD2
|
||||
sendSanyo KEYWORD2
|
||||
sendMitsubishi KEYWORD2
|
||||
sendRaw KEYWORD2
|
||||
sendRC5 KEYWORD2
|
||||
sendRC6 KEYWORD2
|
||||
sendDISH KEYWORD2
|
||||
sendSharp KEYWORD2
|
||||
sendPanasonic KEYWORD2
|
||||
sendJVC KEYWORD2
|
||||
|
||||
#
|
||||
#######################################
|
||||
# Constants (LITERAL1)
|
||||
#######################################
|
||||
|
||||
NEC LITERAL1
|
||||
SONY LITERAL1
|
||||
SANYO LITERAL1
|
||||
MITSUBISHI LITERAL1
|
||||
RC5 LITERAL1
|
||||
RC6 LITERAL1
|
||||
DISH LITERAL1
|
||||
SHARP LITERAL1
|
||||
PANASONIC LITERAL1
|
||||
JVC LITERAL1
|
||||
UNKNOWN LITERAL1
|
||||
REPEAT LITERAL1
|
||||
@@ -1,14 +0,0 @@
|
||||
This is the IRremote library for the Arduino.
|
||||
|
||||
To download from github (http://github.com/shirriff/Arduino-IRremote), click on the "Downloads" link in the upper right, click "Download as zip", and get a zip file. Unzip it and rename the directory shirriff-Arduino-IRremote-nnn to IRremote
|
||||
|
||||
To install, move the downloaded IRremote directory to:
|
||||
arduino-1.x/libraries/IRremote
|
||||
where arduino-1.x is your Arduino installation directory
|
||||
|
||||
After installation you should have files such as:
|
||||
arduino-1.x/libraries/IRremote/IRremote.cpp
|
||||
|
||||
For details on the library see the Wiki on github or the blog post http://arcfn.com/2009/08/multi-protocol-infrared-remote-library.html
|
||||
|
||||
Copyright 2009-2012 Ken Shirriff
|
||||
Binary file not shown.
@@ -1,206 +0,0 @@
|
||||
/*
|
||||
MsTimer2.h - Using timer2 with 1ms resolution
|
||||
Javier Valencia <javiervalencia80@gmail.com>
|
||||
|
||||
History:
|
||||
29/Dec/11 - V0.6 added support for ATmega32u4, AT90USB646, AT90USB1286 (paul@pjrc.com)
|
||||
some improvements added by Bill Perry
|
||||
note: uses timer4 on Atmega32u4
|
||||
29/May/09 - V0.5 added support for Atmega1280 (thanks to Manuel Negri)
|
||||
19/Mar/09 - V0.4 added support for ATmega328P (thanks to Jerome Despatis)
|
||||
11/Jun/08 - V0.3
|
||||
changes to allow working with different CPU frequencies
|
||||
added support for ATMega128 (using timer2)
|
||||
compatible with ATMega48/88/168/8
|
||||
10/May/08 - V0.2 added some security tests and volatile keywords
|
||||
9/May/08 - V0.1 released working on ATMEGA168 only
|
||||
|
||||
|
||||
This library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
This library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public
|
||||
License along with this library; if not, write to the Free Software
|
||||
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
*/
|
||||
|
||||
#include <MsTimer2.h>
|
||||
|
||||
unsigned long MsTimer2::msecs;
|
||||
void (*MsTimer2::func)();
|
||||
volatile unsigned long MsTimer2::count;
|
||||
volatile char MsTimer2::overflowing;
|
||||
volatile unsigned int MsTimer2::tcnt2;
|
||||
|
||||
void MsTimer2::set(unsigned long ms, void (*f)()) {
|
||||
float prescaler = 0.0;
|
||||
|
||||
if (ms == 0)
|
||||
msecs = 1;
|
||||
else
|
||||
msecs = ms;
|
||||
|
||||
func = f;
|
||||
|
||||
#if defined (__AVR_ATmega168__) || defined (__AVR_ATmega48__) || defined (__AVR_ATmega88__) || defined (__AVR_ATmega328P__) || defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) || defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB1286__)
|
||||
TIMSK2 &= ~(1<<TOIE2);
|
||||
TCCR2A &= ~((1<<WGM21) | (1<<WGM20));
|
||||
TCCR2B &= ~(1<<WGM22);
|
||||
ASSR &= ~(1<<AS2);
|
||||
TIMSK2 &= ~(1<<OCIE2A);
|
||||
|
||||
if ((F_CPU >= 1000000UL) && (F_CPU <= 16000000UL)) { // prescaler set to 64
|
||||
TCCR2B |= (1<<CS22);
|
||||
TCCR2B &= ~((1<<CS21) | (1<<CS20));
|
||||
prescaler = 64.0;
|
||||
} else if (F_CPU < 1000000UL) { // prescaler set to 8
|
||||
TCCR2B |= (1<<CS21);
|
||||
TCCR2B &= ~((1<<CS22) | (1<<CS20));
|
||||
prescaler = 8.0;
|
||||
} else { // F_CPU > 16Mhz, prescaler set to 128
|
||||
TCCR2B |= ((1<<CS22) | (1<<CS20));
|
||||
TCCR2B &= ~(1<<CS21);
|
||||
prescaler = 128.0;
|
||||
}
|
||||
#elif defined (__AVR_ATmega8__)
|
||||
TIMSK &= ~(1<<TOIE2);
|
||||
TCCR2 &= ~((1<<WGM21) | (1<<WGM20));
|
||||
TIMSK &= ~(1<<OCIE2);
|
||||
ASSR &= ~(1<<AS2);
|
||||
|
||||
if ((F_CPU >= 1000000UL) && (F_CPU <= 16000000UL)) { // prescaler set to 64
|
||||
TCCR2 |= (1<<CS22);
|
||||
TCCR2 &= ~((1<<CS21) | (1<<CS20));
|
||||
prescaler = 64.0;
|
||||
} else if (F_CPU < 1000000UL) { // prescaler set to 8
|
||||
TCCR2 |= (1<<CS21);
|
||||
TCCR2 &= ~((1<<CS22) | (1<<CS20));
|
||||
prescaler = 8.0;
|
||||
} else { // F_CPU > 16Mhz, prescaler set to 128
|
||||
TCCR2 |= ((1<<CS22) && (1<<CS20));
|
||||
TCCR2 &= ~(1<<CS21);
|
||||
prescaler = 128.0;
|
||||
}
|
||||
#elif defined (__AVR_ATmega128__)
|
||||
TIMSK &= ~(1<<TOIE2);
|
||||
TCCR2 &= ~((1<<WGM21) | (1<<WGM20));
|
||||
TIMSK &= ~(1<<OCIE2);
|
||||
|
||||
if ((F_CPU >= 1000000UL) && (F_CPU <= 16000000UL)) { // prescaler set to 64
|
||||
TCCR2 |= ((1<<CS21) | (1<<CS20));
|
||||
TCCR2 &= ~(1<<CS22);
|
||||
prescaler = 64.0;
|
||||
} else if (F_CPU < 1000000UL) { // prescaler set to 8
|
||||
TCCR2 |= (1<<CS21);
|
||||
TCCR2 &= ~((1<<CS22) | (1<<CS20));
|
||||
prescaler = 8.0;
|
||||
} else { // F_CPU > 16Mhz, prescaler set to 256
|
||||
TCCR2 |= (1<<CS22);
|
||||
TCCR2 &= ~((1<<CS21) | (1<<CS20));
|
||||
prescaler = 256.0;
|
||||
}
|
||||
#elif defined (__AVR_ATmega32U4__)
|
||||
TCCR4B = 0;
|
||||
TCCR4A = 0;
|
||||
TCCR4C = 0;
|
||||
TCCR4D = 0;
|
||||
TCCR4E = 0;
|
||||
if (F_CPU >= 16000000L) {
|
||||
TCCR4B = (1<<CS43) | (1<<PSR4);
|
||||
prescaler = 128.0;
|
||||
} else if (F_CPU >= 8000000L) {
|
||||
TCCR4B = (1<<CS42) | (1<<CS41) | (1<<CS40) | (1<<PSR4);
|
||||
prescaler = 64.0;
|
||||
} else if (F_CPU >= 4000000L) {
|
||||
TCCR4B = (1<<CS42) | (1<<CS41) | (1<<PSR4);
|
||||
prescaler = 32.0;
|
||||
} else if (F_CPU >= 2000000L) {
|
||||
TCCR4B = (1<<CS42) | (1<<CS40) | (1<<PSR4);
|
||||
prescaler = 16.0;
|
||||
} else if (F_CPU >= 1000000L) {
|
||||
TCCR4B = (1<<CS42) | (1<<PSR4);
|
||||
prescaler = 8.0;
|
||||
} else if (F_CPU >= 500000L) {
|
||||
TCCR4B = (1<<CS41) | (1<<CS40) | (1<<PSR4);
|
||||
prescaler = 4.0;
|
||||
} else {
|
||||
TCCR4B = (1<<CS41) | (1<<PSR4);
|
||||
prescaler = 2.0;
|
||||
}
|
||||
tcnt2 = (int)((float)F_CPU * 0.001 / prescaler) - 1;
|
||||
OCR4C = tcnt2;
|
||||
return;
|
||||
#else
|
||||
#error Unsupported CPU type
|
||||
#endif
|
||||
|
||||
tcnt2 = 256 - (int)((float)F_CPU * 0.001 / prescaler);
|
||||
}
|
||||
|
||||
void MsTimer2::start() {
|
||||
count = 0;
|
||||
overflowing = 0;
|
||||
#if defined (__AVR_ATmega168__) || defined (__AVR_ATmega48__) || defined (__AVR_ATmega88__) || defined (__AVR_ATmega328P__) || defined (__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) || defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB1286__)
|
||||
TCNT2 = tcnt2;
|
||||
TIMSK2 |= (1<<TOIE2);
|
||||
#elif defined (__AVR_ATmega128__)
|
||||
TCNT2 = tcnt2;
|
||||
TIMSK |= (1<<TOIE2);
|
||||
#elif defined (__AVR_ATmega8__)
|
||||
TCNT2 = tcnt2;
|
||||
TIMSK |= (1<<TOIE2);
|
||||
#elif defined (__AVR_ATmega32U4__)
|
||||
TIFR4 = (1<<TOV4);
|
||||
TCNT4 = 0;
|
||||
TIMSK4 = (1<<TOIE4);
|
||||
#endif
|
||||
}
|
||||
|
||||
void MsTimer2::stop() {
|
||||
#if defined (__AVR_ATmega168__) || defined (__AVR_ATmega48__) || defined (__AVR_ATmega88__) || defined (__AVR_ATmega328P__) || defined (__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) || defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB1286__)
|
||||
TIMSK2 &= ~(1<<TOIE2);
|
||||
#elif defined (__AVR_ATmega128__)
|
||||
TIMSK &= ~(1<<TOIE2);
|
||||
#elif defined (__AVR_ATmega8__)
|
||||
TIMSK &= ~(1<<TOIE2);
|
||||
#elif defined (__AVR_ATmega32U4__)
|
||||
TIMSK4 = 0;
|
||||
#endif
|
||||
}
|
||||
|
||||
void MsTimer2::_overflow() {
|
||||
count += 1;
|
||||
|
||||
if (count >= msecs && !overflowing) {
|
||||
overflowing = 1;
|
||||
count = count - msecs; // subtract ms to catch missed overflows
|
||||
// set to 0 if you don't want this.
|
||||
(*func)();
|
||||
overflowing = 0;
|
||||
}
|
||||
}
|
||||
|
||||
#if defined (__AVR_ATmega32U4__)
|
||||
ISR(TIMER4_OVF_vect) {
|
||||
#else
|
||||
ISR(TIMER2_OVF_vect) {
|
||||
#endif
|
||||
#if defined (__AVR_ATmega168__) || defined (__AVR_ATmega48__) || defined (__AVR_ATmega88__) || defined (__AVR_ATmega328P__) || defined (__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) || defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB1286__)
|
||||
TCNT2 = MsTimer2::tcnt2;
|
||||
#elif defined (__AVR_ATmega128__)
|
||||
TCNT2 = MsTimer2::tcnt2;
|
||||
#elif defined (__AVR_ATmega8__)
|
||||
TCNT2 = MsTimer2::tcnt2;
|
||||
#elif defined (__AVR_ATmega32U4__)
|
||||
// not necessary on 32u4's high speed timer4
|
||||
#endif
|
||||
MsTimer2::_overflow();
|
||||
}
|
||||
|
||||
@@ -1,23 +0,0 @@
|
||||
#ifndef MsTimer2_h
|
||||
#define MsTimer2_h
|
||||
|
||||
#ifdef __AVR__
|
||||
#include <avr/interrupt.h>
|
||||
#else
|
||||
#error MsTimer2 library only works on AVR architecture
|
||||
#endif
|
||||
|
||||
namespace MsTimer2 {
|
||||
extern unsigned long msecs;
|
||||
extern void (*func)();
|
||||
extern volatile unsigned long count;
|
||||
extern volatile char overflowing;
|
||||
extern volatile unsigned int tcnt2;
|
||||
|
||||
void set(unsigned long ms, void (*f)());
|
||||
void start();
|
||||
void stop();
|
||||
void _overflow();
|
||||
}
|
||||
|
||||
#endif
|
||||
@@ -1,42 +0,0 @@
|
||||
char dummyvar; // to get Arduinoi IDE to include core headers properly
|
||||
|
||||
/*
|
||||
MsTimer2 is a small and very easy to use library to interface Timer2 with
|
||||
humans. It's called MsTimer2 because it "hardcodes" a resolution of 1
|
||||
millisecond on timer2
|
||||
For Details see: http://www.arduino.cc/playground/Main/MsTimer2
|
||||
*/
|
||||
#include <MsTimer2.h>
|
||||
|
||||
// Switch on LED on and off each half second
|
||||
|
||||
#if defined(ARDUINO) && ARDUINO >= 100
|
||||
const int led_pin = LED_BUILTIN; // 1.0 built in LED pin var
|
||||
#else
|
||||
#if defined(CORE_LED0_PIN)
|
||||
const int led_pin = CORE_LED0_PIN; // 3rd party LED pin define
|
||||
#else
|
||||
const int led_pin = 13; // default to pin 13
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
void flash()
|
||||
{
|
||||
static boolean output = HIGH;
|
||||
|
||||
digitalWrite(led_pin, output);
|
||||
output = !output;
|
||||
}
|
||||
|
||||
void setup()
|
||||
{
|
||||
pinMode(led_pin, OUTPUT);
|
||||
|
||||
MsTimer2::set(500, flash); // 500ms period
|
||||
MsTimer2::start();
|
||||
}
|
||||
|
||||
void loop()
|
||||
{
|
||||
}
|
||||
@@ -1,4 +0,0 @@
|
||||
MsTimer2 KEYWORD1
|
||||
set KEYWORD2
|
||||
start KEYWORD2
|
||||
stop KEYWORD2
|
||||
@@ -1,227 +0,0 @@
|
||||
/* IR Remote control
|
||||
* capture a infrared burst from a remote control and generate code template for reproducing that burst
|
||||
* measure the infrared carrier frequency / capture ir pulse train (max 200 pulses )
|
||||
* connect the IR receiver Module (IR_reveiver_schematic.jpg)
|
||||
* to pin 4,5,6,7
|
||||
*
|
||||
*
|
||||
* KHM 2010 / Martin Nawrath
|
||||
* Kunsthochschule fuer Medien Koeln
|
||||
* Academy of Media Arts Cologne
|
||||
*/
|
||||
|
||||
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
|
||||
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
|
||||
|
||||
//! Macro that clears all Timer/Counter1 interrupt flags.
|
||||
#define CLEAR_ALL_TIMER1_INT_FLAGS (TIFR1 = TIFR1)
|
||||
|
||||
|
||||
int pinLed = 13; // LED connected to digital pin 13
|
||||
int pinGND = 4; // Ground for IR reveiver Module
|
||||
int pinVCC = 5; // +5V for IR reveiver Module
|
||||
int pinAIN0= 6; // Analog Comparator In 0 / IR reveiver Module
|
||||
int pinAIN1= 7; // Analog Comparator In 0 / IR reveiver Module
|
||||
int pinTest = 8;
|
||||
unsigned int khz;
|
||||
|
||||
byte bb;
|
||||
byte bba;
|
||||
int cnt;
|
||||
const int maxlen = 300;
|
||||
int codelen;
|
||||
unsigned int timecode[maxlen+5];
|
||||
|
||||
|
||||
|
||||
void setup()
|
||||
{
|
||||
pinMode(pinLed, OUTPUT); // sets the digital pin as output
|
||||
pinMode(pinTest, OUTPUT);
|
||||
pinMode(pinGND, OUTPUT);
|
||||
pinMode(pinVCC, OUTPUT);
|
||||
pinMode(pinAIN0, INPUT);
|
||||
pinMode(pinAIN1, INPUT);
|
||||
|
||||
|
||||
digitalWrite(pinVCC,1);
|
||||
digitalWrite(pinGND,0);
|
||||
|
||||
|
||||
Serial.begin(115200); // connect to the serial port
|
||||
|
||||
// hardware counter setup ( refer atmega168.pdf chapter 16-bit counter1)
|
||||
TCCR1A=0; // reset timer/counter1 control register A
|
||||
TCCR1B=0; // reset timer/counter1 control register A
|
||||
TCNT1=0; // counter value = 0
|
||||
// set timer/counter1 hardware as counter , counts events on pin T1 ( arduino pin 5)
|
||||
// normal mode, wgm10 .. wgm13 = 0
|
||||
cbi (TCCR1B ,CS10); // no clock
|
||||
cbi (TCCR1B ,CS11);
|
||||
cbi (TCCR1B ,CS12);
|
||||
|
||||
|
||||
// timer2 setup / is used for frequency measurement gatetime generation
|
||||
// timer 2 presaler set to 256 / timer 2 clock = 16Mhz / 256 = 62500 Hz
|
||||
cbi (TCCR2B ,CS20);
|
||||
sbi (TCCR2B ,CS21);
|
||||
sbi (TCCR2B ,CS22);
|
||||
|
||||
//set timer2 to CTC Mode
|
||||
cbi (TCCR2A ,WGM20);
|
||||
sbi (TCCR2A ,WGM21);
|
||||
cbi (TCCR2B ,WGM22);
|
||||
OCR2A = 124; // CTC at top of OCR2A / timer2 interrupt when coun value reaches OCR2A value
|
||||
|
||||
// interrupt control
|
||||
|
||||
// sbi (TIMSK2,OCIE2A); // enable Timer2 Interrupt
|
||||
cbi(ADCSRB,ACME);
|
||||
cbi(ACSR,ACD);
|
||||
cbi(ACSR,ACBG);
|
||||
|
||||
Serial.println(" Infrared code detector");
|
||||
while ((ACSR & 32) == 0) {
|
||||
}
|
||||
khz=f_measure();
|
||||
|
||||
Serial.print(khz);
|
||||
Serial.print( " KHz");
|
||||
Serial.println( "");
|
||||
}
|
||||
|
||||
void loop()
|
||||
{
|
||||
|
||||
|
||||
if (ACSR & 32) { // if IR Signal on pin 5 present
|
||||
|
||||
TCCR1B=0; //timer1 off
|
||||
sbi(TIFR1,TOV1); // clear Timer/Counter 1 overflow flag
|
||||
TCNT1=0; // clear timer1
|
||||
TCCR1B=3; //timer1 prescaler =64;
|
||||
bba=0;
|
||||
|
||||
cnt=1;
|
||||
while ((TIFR1 & 1)==0 ) { // wait for T1 period length 250ms TIFR1 Flag
|
||||
|
||||
bb=0;
|
||||
bb = ACSR & 32; // sample IR Strobe Signal for HIGH/LOW
|
||||
delayMicroseconds(5);
|
||||
bb =bb | ACSR & 32;
|
||||
delayMicroseconds(5);
|
||||
bb =bb | ACSR & 32;
|
||||
delayMicroseconds(5);
|
||||
bb =bb | ACSR & 32;
|
||||
delayMicroseconds(5);
|
||||
bb =bb | ACSR & 32;
|
||||
delayMicroseconds(5);
|
||||
bb =bb | ACSR & 32;
|
||||
delayMicroseconds(5);
|
||||
bb =bb | ACSR & 32;
|
||||
delayMicroseconds(5);
|
||||
bb =bb | ACSR & 32;
|
||||
|
||||
if (bb != bba) { // if IR strobe level changed
|
||||
PORTB = PORTB ^ 32; // LED blink
|
||||
timecode[cnt]=TCNT1; // Store Timecode in Table
|
||||
codelen=TCNT1;
|
||||
cnt++; // Count IR Strobes
|
||||
if (cnt > maxlen) cnt =maxlen-1; // cnt max
|
||||
delayMicroseconds(200);
|
||||
}
|
||||
bba=bb;
|
||||
}
|
||||
timecode[cnt]=0;
|
||||
print_code_template();
|
||||
for (int ii=1;ii < maxlen;ii++) timecode[ii]=0;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
//******************************************************************
|
||||
// print a code template according to a pressed button
|
||||
void print_code_template(){
|
||||
unsigned int ix,ia,ia1,ia2;
|
||||
char st1[20];
|
||||
unsigned long int w1,w2;
|
||||
Serial.println( "//****************** CODE TEMPLATE FOR IR REMOTE ****************************");
|
||||
|
||||
|
||||
Serial.print( "// IR codelength = ");
|
||||
Serial.print( codelen*4/1000);
|
||||
Serial.print( " ms");
|
||||
Serial.println( "");
|
||||
|
||||
Serial.print( "ICR1 = 16000 /") ;
|
||||
Serial.print(khz);
|
||||
Serial.println( "; // IR carrier frequency") ;
|
||||
for (ix=1;ix < maxlen;ix+=2) {
|
||||
ia=timecode[ix];
|
||||
ia1=timecode[ix+1];
|
||||
ia2=timecode[ix+2];
|
||||
|
||||
if (ia !=0) {
|
||||
Serial.print( "sbi(DDRB,1); delayMicroseconds(");
|
||||
w1=ia1-ia;
|
||||
w1=w1*4;
|
||||
|
||||
sprintf(st1, "%4d );", w1);
|
||||
Serial.print( st1);
|
||||
timecode[ix]=0;
|
||||
|
||||
}
|
||||
if (ia2 !=0) {
|
||||
w2=ia2-ia1;
|
||||
w2=w2*4;
|
||||
Serial.print( " cbi(DDRB,1); delayMicroseconds(" );
|
||||
sprintf(st1, "%4d );", w2);
|
||||
Serial.print( st1);
|
||||
|
||||
timecode[ix]=0;
|
||||
timecode[ix+1]=0;
|
||||
Serial.print( " // ");
|
||||
sprintf(st1, "ix:%3d", ix);
|
||||
Serial.print( st1);
|
||||
sprintf(st1, " ton:%4d", w1);
|
||||
Serial.print( st1);
|
||||
sprintf(st1, " toff:%4d", w2);
|
||||
Serial.print( st1);
|
||||
Serial.println("");
|
||||
}
|
||||
}
|
||||
Serial.print( " cbi(DDRB,1);" );
|
||||
Serial.println("");
|
||||
Serial.println("");
|
||||
Serial.println("");
|
||||
|
||||
}
|
||||
//******************************************************************
|
||||
// measure infrared carrier frequency at pin 6,7 / analog comparator
|
||||
unsigned int f_measure() {
|
||||
|
||||
TCCR1B=0; //timer1 off
|
||||
sbi(TIFR1,TOV1); // clear Timer/Counter 1 overflow flag
|
||||
TCNT1=0; // clear timer1
|
||||
TCCR1B=3; //timer1 prescaler =64;
|
||||
int cnt=0;
|
||||
byte bb,bba;
|
||||
|
||||
while (TCNT1 < 250) {
|
||||
bb=ACSR;
|
||||
if (bb != bba) {
|
||||
cnt++;
|
||||
// PORTB ^= 32;
|
||||
}
|
||||
bba=bb;
|
||||
}
|
||||
cnt=cnt/2;
|
||||
return (cnt);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
@@ -1,368 +0,0 @@
|
||||
/* DVD IR Synchronizer
|
||||
*
|
||||
* connect a IR LED to: Anode pin9, Cathode pin8
|
||||
* KHM 2010 / Martin Nawrath
|
||||
* Kunsthochschule fuer Medien Koeln
|
||||
* Academy of Media Arts Cologne
|
||||
|
||||
*/
|
||||
|
||||
|
||||
#include <MsTimer2.h>
|
||||
|
||||
|
||||
#ifndef cbi
|
||||
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
|
||||
#endif
|
||||
#ifndef sbi
|
||||
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
|
||||
#endif
|
||||
|
||||
|
||||
int pinIR_OUT =9;
|
||||
int pinGND =8;
|
||||
int pinLED =13;
|
||||
|
||||
int bb;
|
||||
int tics;
|
||||
int secs;
|
||||
int f_sec;
|
||||
int f_sync;
|
||||
int playtime= 26*60+50; // set here ypur DVD title playtime
|
||||
|
||||
|
||||
|
||||
void setup() {
|
||||
pinMode(pinGND,OUTPUT);
|
||||
Serial.begin(115200);
|
||||
|
||||
Serial.println("Panasonic DVD S54 Synchronizer");
|
||||
Serial.print("Playtime: ");
|
||||
secs=playtime;
|
||||
Serial.print("sec:");
|
||||
Serial.print(secs);
|
||||
Serial.print(" / mm:ss ");
|
||||
Serial.print(secs/60);
|
||||
Serial.print(":");
|
||||
Serial.print(secs % 60);
|
||||
Serial.println("");
|
||||
|
||||
|
||||
TCCR1A = 0;
|
||||
cbi(TCCR1A,COM1A0); // timer1 counter control
|
||||
|
||||
sbi(TCCR1A,COM1A1); // clear on compare match
|
||||
|
||||
cbi(TCCR1A,WGM10); // waveform generation mode 14 TOP=ICR1
|
||||
sbi(TCCR1A,WGM11);
|
||||
sbi(TCCR1B,WGM12);
|
||||
sbi(TCCR1B,WGM13);
|
||||
|
||||
sbi(TCCR1B,CS10); // timer 1 clock select
|
||||
cbi(TCCR1B,CS11); // prescaler=1
|
||||
cbi(TCCR1B,CS12);
|
||||
|
||||
int f_carrier = 37 ; // choose right IR carrier frequency
|
||||
ICR1 = 16000 / f_carrier ;
|
||||
|
||||
OCR1A = 200 ; // Leistung der Sendediode 0..200
|
||||
|
||||
pinMode(pinIR_OUT,OUTPUT);
|
||||
pinMode(pinLED,OUTPUT);
|
||||
|
||||
|
||||
MsTimer2::set(10, ms10); // 10ms period
|
||||
MsTimer2::start();
|
||||
|
||||
Serial.println("play");
|
||||
send_play();
|
||||
delay(7000);
|
||||
|
||||
|
||||
|
||||
secs=playtime;
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/********************************************************************/
|
||||
void loop() {
|
||||
|
||||
|
||||
if(f_sec){
|
||||
f_sec=0;
|
||||
|
||||
Serial.print("sec:");
|
||||
Serial.print(secs);
|
||||
Serial.print(" / mm:ss ");
|
||||
Serial.print(secs/60);
|
||||
Serial.print(":");
|
||||
Serial.print(secs % 60);
|
||||
Serial.println("");
|
||||
|
||||
if (secs >= playtime){
|
||||
f_sync=1;
|
||||
Serial.println("Sync");
|
||||
|
||||
Serial.println("pause");
|
||||
send_pause();
|
||||
delay(2000);
|
||||
|
||||
Serial.println("rev");
|
||||
send_rev();
|
||||
delay(2000);
|
||||
|
||||
Serial.println("play");
|
||||
send_play();
|
||||
|
||||
secs=0;
|
||||
f_sync=0;
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
}
|
||||
/********************************************************************/
|
||||
void ms10() {
|
||||
tics++;
|
||||
if (tics >= 100) {
|
||||
tics=0;
|
||||
secs++;
|
||||
//Serial.println("second");
|
||||
f_sec=1;
|
||||
PORTB ^= 32;
|
||||
}
|
||||
if (f_sync==1)
|
||||
if ( tics % 10 == 0) PORTB ^= 32;
|
||||
|
||||
}
|
||||
|
||||
/********************************************************************/
|
||||
void send_stop() {
|
||||
sbi(DDRB,1); delayMicroseconds(3472); cbi(DDRB,1); delayMicroseconds(1720); // 1
|
||||
sbi(DDRB,1); delayMicroseconds(440); cbi(DDRB,1); delayMicroseconds(436); // 3
|
||||
sbi(DDRB,1); delayMicroseconds(436); cbi(DDRB,1); delayMicroseconds(1292); // 5
|
||||
sbi(DDRB,1); delayMicroseconds(456); cbi(DDRB,1); delayMicroseconds(420); // 7
|
||||
sbi(DDRB,1); delayMicroseconds(436); cbi(DDRB,1); delayMicroseconds(432); // 9
|
||||
sbi(DDRB,1); delayMicroseconds(444); cbi(DDRB,1); delayMicroseconds(436); // 11
|
||||
sbi(DDRB,1); delayMicroseconds(440); cbi(DDRB,1); delayMicroseconds(412); // 13
|
||||
sbi(DDRB,1); delayMicroseconds(444); cbi(DDRB,1); delayMicroseconds(432); // 15
|
||||
sbi(DDRB,1); delayMicroseconds(436); cbi(DDRB,1); delayMicroseconds(440); // 17
|
||||
sbi(DDRB,1); delayMicroseconds(436); cbi(DDRB,1); delayMicroseconds(420); // 19
|
||||
sbi(DDRB,1); delayMicroseconds(456); cbi(DDRB,1); delayMicroseconds(420); // 21
|
||||
sbi(DDRB,1); delayMicroseconds(436); cbi(DDRB,1); delayMicroseconds(436); // 23
|
||||
sbi(DDRB,1); delayMicroseconds(440); cbi(DDRB,1); delayMicroseconds(436); // 25
|
||||
sbi(DDRB,1); delayMicroseconds(440); cbi(DDRB,1); delayMicroseconds(412); // 27
|
||||
sbi(DDRB,1); delayMicroseconds(436); cbi(DDRB,1); delayMicroseconds(1316); // 29
|
||||
sbi(DDRB,1); delayMicroseconds(436); cbi(DDRB,1); delayMicroseconds(416); // 31
|
||||
sbi(DDRB,1); delayMicroseconds(460); cbi(DDRB,1); delayMicroseconds(412); // 33
|
||||
sbi(DDRB,1); delayMicroseconds(440); cbi(DDRB,1); delayMicroseconds(436); // 35
|
||||
sbi(DDRB,1); delayMicroseconds(440); cbi(DDRB,1); delayMicroseconds(412); // 37
|
||||
sbi(DDRB,1); delayMicroseconds(376); cbi(DDRB,1); delayMicroseconds(24); // 39
|
||||
sbi(DDRB,1); delayMicroseconds(48); cbi(DDRB,1); delayMicroseconds(432); // 41
|
||||
sbi(DDRB,1); delayMicroseconds(436); cbi(DDRB,1); delayMicroseconds(444); // 43
|
||||
sbi(DDRB,1); delayMicroseconds(432); cbi(DDRB,1); delayMicroseconds(1292); // 45
|
||||
sbi(DDRB,1); delayMicroseconds(436); cbi(DDRB,1); delayMicroseconds(1308); // 47
|
||||
sbi(DDRB,1); delayMicroseconds(444); cbi(DDRB,1); delayMicroseconds(412); // 49
|
||||
sbi(DDRB,1); delayMicroseconds(464); cbi(DDRB,1); delayMicroseconds(1284); // 51
|
||||
sbi(DDRB,1); delayMicroseconds(436); cbi(DDRB,1); delayMicroseconds(440); // 53
|
||||
sbi(DDRB,1); delayMicroseconds(436); cbi(DDRB,1); delayMicroseconds(412); // 55
|
||||
sbi(DDRB,1); delayMicroseconds(464); cbi(DDRB,1); delayMicroseconds(412); // 57
|
||||
sbi(DDRB,1); delayMicroseconds(444); cbi(DDRB,1); delayMicroseconds(432); // 59
|
||||
sbi(DDRB,1); delayMicroseconds(444); cbi(DDRB,1); delayMicroseconds(412); // 61
|
||||
sbi(DDRB,1); delayMicroseconds(456); cbi(DDRB,1); delayMicroseconds(420); // 63
|
||||
sbi(DDRB,1); delayMicroseconds(436); cbi(DDRB,1); delayMicroseconds(440); // 65
|
||||
sbi(DDRB,1); delayMicroseconds(436); cbi(DDRB,1); delayMicroseconds(420); // 67
|
||||
sbi(DDRB,1); delayMicroseconds(456); cbi(DDRB,1); delayMicroseconds(412); // 69
|
||||
sbi(DDRB,1); delayMicroseconds(444); cbi(DDRB,1); delayMicroseconds(432); // 71
|
||||
sbi(DDRB,1); delayMicroseconds(444); cbi(DDRB,1); delayMicroseconds(436); // 73
|
||||
sbi(DDRB,1); delayMicroseconds(440); cbi(DDRB,1); delayMicroseconds(412); // 75
|
||||
sbi(DDRB,1); delayMicroseconds(460); cbi(DDRB,1); delayMicroseconds(416); // 77
|
||||
sbi(DDRB,1); delayMicroseconds(436); cbi(DDRB,1); delayMicroseconds(440); // 79
|
||||
sbi(DDRB,1); delayMicroseconds(436); cbi(DDRB,1); delayMicroseconds(420); // 81
|
||||
sbi(DDRB,1); delayMicroseconds(436); cbi(DDRB,1); delayMicroseconds(432); // 83
|
||||
sbi(DDRB,1); delayMicroseconds(444); cbi(DDRB,1); delayMicroseconds(436); // 85
|
||||
sbi(DDRB,1); delayMicroseconds(440); cbi(DDRB,1); delayMicroseconds(412); // 87
|
||||
sbi(DDRB,1); delayMicroseconds(464); cbi(DDRB,1); delayMicroseconds(412); // 89
|
||||
sbi(DDRB,1); delayMicroseconds(436); cbi(DDRB,1); delayMicroseconds(440); // 91
|
||||
sbi(DDRB,1); delayMicroseconds(436); cbi(DDRB,1); delayMicroseconds(1288); // 93
|
||||
sbi(DDRB,1); delayMicroseconds(440); cbi(DDRB,1); delayMicroseconds(1308); // 95
|
||||
sbi(DDRB,1); delayMicroseconds(440); cbi(DDRB,1); delayMicroseconds(436); // 97
|
||||
sbi(DDRB,1); delayMicroseconds(436); cbi(DDRB,1); delayMicroseconds(1292); // 99
|
||||
sbi(DDRB,1); delayMicroseconds(436); cbi(DDRB,1);
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
||||
/********************************************************************/
|
||||
void send_play() {
|
||||
sbi(DDRB,1); delayMicroseconds( 3476 ); cbi(DDRB,1); delayMicroseconds( 1732 );
|
||||
sbi(DDRB,1); delayMicroseconds( 444 ); cbi(DDRB,1); delayMicroseconds( 412 );
|
||||
sbi(DDRB,1); delayMicroseconds( 456 ); cbi(DDRB,1); delayMicroseconds( 1300 );
|
||||
sbi(DDRB,1); delayMicroseconds( 436 ); cbi(DDRB,1); delayMicroseconds( 432 );
|
||||
sbi(DDRB,1); delayMicroseconds( 448 ); cbi(DDRB,1); delayMicroseconds( 412 );
|
||||
sbi(DDRB,1); delayMicroseconds( 444 ); cbi(DDRB,1); delayMicroseconds( 432 );
|
||||
sbi(DDRB,1); delayMicroseconds( 448 ); cbi(DDRB,1); delayMicroseconds( 412 );
|
||||
sbi(DDRB,1); delayMicroseconds( 456 ); cbi(DDRB,1); delayMicroseconds( 424 );
|
||||
sbi(DDRB,1); delayMicroseconds( 432 ); cbi(DDRB,1); delayMicroseconds( 444 );
|
||||
sbi(DDRB,1); delayMicroseconds( 436 ); cbi(DDRB,1); delayMicroseconds( 424 );
|
||||
sbi(DDRB,1); delayMicroseconds( 432 ); cbi(DDRB,1); delayMicroseconds( 436 );
|
||||
sbi(DDRB,1); delayMicroseconds( 444 ); cbi(DDRB,1); delayMicroseconds( 436 );
|
||||
sbi(DDRB,1); delayMicroseconds( 420 ); cbi(DDRB,1); delayMicroseconds( 436 );
|
||||
sbi(DDRB,1); delayMicroseconds( 444 ); cbi(DDRB,1); delayMicroseconds( 436 );
|
||||
sbi(DDRB,1); delayMicroseconds( 436 ); cbi(DDRB,1); delayMicroseconds( 1296 );
|
||||
sbi(DDRB,1); delayMicroseconds( 436 ); cbi(DDRB,1); delayMicroseconds( 444 );
|
||||
sbi(DDRB,1); delayMicroseconds( 436 ); cbi(DDRB,1); delayMicroseconds( 436 );
|
||||
sbi(DDRB,1); delayMicroseconds( 420 ); cbi(DDRB,1); delayMicroseconds( 436 );
|
||||
sbi(DDRB,1); delayMicroseconds( 444 ); cbi(DDRB,1); delayMicroseconds( 436 );
|
||||
sbi(DDRB,1); delayMicroseconds( 432 ); cbi(DDRB,1); delayMicroseconds( 424 );
|
||||
sbi(DDRB,1); delayMicroseconds( 456 ); cbi(DDRB,1); delayMicroseconds( 424 );
|
||||
sbi(DDRB,1); delayMicroseconds( 432 ); cbi(DDRB,1); delayMicroseconds( 1292 );
|
||||
sbi(DDRB,1); delayMicroseconds( 444 ); cbi(DDRB,1); delayMicroseconds( 1312 );
|
||||
sbi(DDRB,1); delayMicroseconds( 444 ); cbi(DDRB,1); delayMicroseconds( 412 );
|
||||
sbi(DDRB,1); delayMicroseconds( 456 ); cbi(DDRB,1); delayMicroseconds( 1300 );
|
||||
sbi(DDRB,1); delayMicroseconds( 432 ); cbi(DDRB,1); delayMicroseconds( 424 );
|
||||
sbi(DDRB,1); delayMicroseconds( 436 ); cbi(DDRB,1); delayMicroseconds( 432 );
|
||||
sbi(DDRB,1); delayMicroseconds( 448 ); cbi(DDRB,1); delayMicroseconds( 432 );
|
||||
sbi(DDRB,1); delayMicroseconds( 444 ); cbi(DDRB,1); delayMicroseconds( 412 );
|
||||
sbi(DDRB,1); delayMicroseconds( 448 ); cbi(DDRB,1); delayMicroseconds( 436 );
|
||||
sbi(DDRB,1); delayMicroseconds( 436 ); cbi(DDRB,1); delayMicroseconds( 420 );
|
||||
sbi(DDRB,1); delayMicroseconds( 436 ); cbi(DDRB,1); delayMicroseconds( 444 );
|
||||
sbi(DDRB,1); delayMicroseconds( 436 ); cbi(DDRB,1); delayMicroseconds( 444 );
|
||||
sbi(DDRB,1); delayMicroseconds( 436 ); cbi(DDRB,1); delayMicroseconds( 412 );
|
||||
sbi(DDRB,1); delayMicroseconds( 444 ); cbi(DDRB,1); delayMicroseconds( 1312 );
|
||||
sbi(DDRB,1); delayMicroseconds( 436 ); cbi(DDRB,1); delayMicroseconds( 420 );
|
||||
sbi(DDRB,1); delayMicroseconds( 436 ); cbi(DDRB,1); delayMicroseconds( 1296 );
|
||||
sbi(DDRB,1); delayMicroseconds( 460 ); cbi(DDRB,1); delayMicroseconds( 412 );
|
||||
sbi(DDRB,1); delayMicroseconds( 444 ); cbi(DDRB,1); delayMicroseconds( 436 );
|
||||
sbi(DDRB,1); delayMicroseconds( 444 ); cbi(DDRB,1); delayMicroseconds( 436 );
|
||||
sbi(DDRB,1); delayMicroseconds( 420 ); cbi(DDRB,1); delayMicroseconds( 436 );
|
||||
sbi(DDRB,1); delayMicroseconds( 432 ); cbi(DDRB,1); delayMicroseconds( 448 );
|
||||
sbi(DDRB,1); delayMicroseconds( 432 ); cbi(DDRB,1); delayMicroseconds( 1300 );
|
||||
sbi(DDRB,1); delayMicroseconds( 436 ); cbi(DDRB,1); delayMicroseconds( 432 );
|
||||
sbi(DDRB,1); delayMicroseconds( 444 ); cbi(DDRB,1); delayMicroseconds( 1292 );
|
||||
sbi(DDRB,1); delayMicroseconds( 444 ); cbi(DDRB,1); delayMicroseconds( 1288 );
|
||||
sbi(DDRB,1); delayMicroseconds( 456 ); cbi(DDRB,1); delayMicroseconds( 1292 );
|
||||
sbi(DDRB,1); delayMicroseconds( 444 ); cbi(DDRB,1); delayMicroseconds( 432 );
|
||||
sbi(DDRB,1); delayMicroseconds( 448 ); cbi(DDRB,1); delayMicroseconds( 1288 );
|
||||
sbi(DDRB,1); delayMicroseconds( 432 ); cbi(DDRB,1); delayMicroseconds( 0 );
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
||||
/********************************************************************/
|
||||
void send_pause() {
|
||||
ICR1 = 16000 /37; // IR carrier frequency
|
||||
sbi(DDRB,1); delayMicroseconds(3500 ); cbi(DDRB,1); delayMicroseconds(1708 ); // ix: 1 ton:3500 toff:1708
|
||||
sbi(DDRB,1); delayMicroseconds( 456 ); cbi(DDRB,1); delayMicroseconds( 428 ); // ix: 3 ton: 456 toff: 428
|
||||
sbi(DDRB,1); delayMicroseconds( 456 ); cbi(DDRB,1); delayMicroseconds(1264 ); // ix: 5 ton: 456 toff:1264
|
||||
sbi(DDRB,1); delayMicroseconds( 464 ); cbi(DDRB,1); delayMicroseconds( 420 ); // ix: 7 ton: 464 toff: 420
|
||||
sbi(DDRB,1); delayMicroseconds( 464 ); cbi(DDRB,1); delayMicroseconds( 384 ); // ix: 9 ton: 464 toff: 384
|
||||
sbi(DDRB,1); delayMicroseconds( 464 ); cbi(DDRB,1); delayMicroseconds( 420 ); // ix: 11 ton: 464 toff: 420
|
||||
sbi(DDRB,1); delayMicroseconds( 456 ); cbi(DDRB,1); delayMicroseconds( 428 ); // ix: 13 ton: 456 toff: 428
|
||||
sbi(DDRB,1); delayMicroseconds( 456 ); cbi(DDRB,1); delayMicroseconds( 388 ); // ix: 15 ton: 456 toff: 388
|
||||
sbi(DDRB,1); delayMicroseconds( 460 ); cbi(DDRB,1); delayMicroseconds( 424 ); // ix: 17 ton: 460 toff: 424
|
||||
sbi(DDRB,1); delayMicroseconds( 460 ); cbi(DDRB,1); delayMicroseconds( 420 ); // ix: 19 ton: 460 toff: 420
|
||||
sbi(DDRB,1); delayMicroseconds( 464 ); cbi(DDRB,1); delayMicroseconds( 420 ); // ix: 21 ton: 464 toff: 420
|
||||
sbi(DDRB,1); delayMicroseconds( 424 ); cbi(DDRB,1); delayMicroseconds( 424 ); // ix: 23 ton: 424 toff: 424
|
||||
sbi(DDRB,1); delayMicroseconds( 460 ); cbi(DDRB,1); delayMicroseconds( 420 ); // ix: 25 ton: 460 toff: 420
|
||||
sbi(DDRB,1); delayMicroseconds( 460 ); cbi(DDRB,1); delayMicroseconds( 424 ); // ix: 27 ton: 460 toff: 424
|
||||
sbi(DDRB,1); delayMicroseconds( 420 ); cbi(DDRB,1); delayMicroseconds(1308 ); // ix: 29 ton: 420 toff:1308
|
||||
sbi(DDRB,1); delayMicroseconds( 460 ); cbi(DDRB,1); delayMicroseconds( 420 ); // ix: 31 ton: 460 toff: 420
|
||||
sbi(DDRB,1); delayMicroseconds( 424 ); cbi(DDRB,1); delayMicroseconds( 424 ); // ix: 33 ton: 424 toff: 424
|
||||
sbi(DDRB,1); delayMicroseconds( 460 ); cbi(DDRB,1); delayMicroseconds( 420 ); // ix: 35 ton: 460 toff: 420
|
||||
sbi(DDRB,1); delayMicroseconds( 464 ); cbi(DDRB,1); delayMicroseconds( 420 ); // ix: 37 ton: 464 toff: 420
|
||||
sbi(DDRB,1); delayMicroseconds( 460 ); cbi(DDRB,1); delayMicroseconds( 388 ); // ix: 39 ton: 460 toff: 388
|
||||
sbi(DDRB,1); delayMicroseconds( 456 ); cbi(DDRB,1); delayMicroseconds( 428 ); // ix: 41 ton: 456 toff: 428
|
||||
sbi(DDRB,1); delayMicroseconds( 456 ); cbi(DDRB,1); delayMicroseconds(1304 ); // ix: 43 ton: 456 toff:1304
|
||||
sbi(DDRB,1); delayMicroseconds( 424 ); cbi(DDRB,1); delayMicroseconds(1304 ); // ix: 45 ton: 424 toff:1304
|
||||
sbi(DDRB,1); delayMicroseconds( 456 ); cbi(DDRB,1); delayMicroseconds( 428 ); // ix: 47 ton: 456 toff: 428
|
||||
sbi(DDRB,1); delayMicroseconds( 456 ); cbi(DDRB,1); delayMicroseconds(1272 ); // ix: 49 ton: 456 toff:1272
|
||||
sbi(DDRB,1); delayMicroseconds( 456 ); cbi(DDRB,1); delayMicroseconds( 420 ); // ix: 51 ton: 456 toff: 420
|
||||
sbi(DDRB,1); delayMicroseconds( 464 ); cbi(DDRB,1); delayMicroseconds( 420 ); // ix: 53 ton: 464 toff: 420
|
||||
sbi(DDRB,1); delayMicroseconds( 424 ); cbi(DDRB,1); delayMicroseconds( 424 ); // ix: 55 ton: 424 toff: 424
|
||||
sbi(DDRB,1); delayMicroseconds( 460 ); cbi(DDRB,1); delayMicroseconds( 424 ); // ix: 57 ton: 460 toff: 424
|
||||
sbi(DDRB,1); delayMicroseconds( 456 ); cbi(DDRB,1); delayMicroseconds( 424 ); // ix: 59 ton: 456 toff: 424
|
||||
sbi(DDRB,1); delayMicroseconds( 424 ); cbi(DDRB,1); delayMicroseconds( 424 ); // ix: 61 ton: 424 toff: 424
|
||||
sbi(DDRB,1); delayMicroseconds( 460 ); cbi(DDRB,1); delayMicroseconds( 424 ); // ix: 63 ton: 460 toff: 424
|
||||
sbi(DDRB,1); delayMicroseconds( 456 ); cbi(DDRB,1); delayMicroseconds( 424 ); // ix: 65 ton: 456 toff: 424
|
||||
sbi(DDRB,1); delayMicroseconds( 424 ); cbi(DDRB,1); delayMicroseconds( 420 ); // ix: 67 ton: 424 toff: 420
|
||||
sbi(DDRB,1); delayMicroseconds( 464 ); cbi(DDRB,1); delayMicroseconds(1300 ); // ix: 69 ton: 464 toff:1300
|
||||
sbi(DDRB,1); delayMicroseconds( 460 ); cbi(DDRB,1); delayMicroseconds(1268 ); // ix: 71 ton: 460 toff:1268
|
||||
sbi(DDRB,1); delayMicroseconds( 460 ); cbi(DDRB,1); delayMicroseconds( 424 ); // ix: 73 ton: 460 toff: 424
|
||||
sbi(DDRB,1); delayMicroseconds( 460 ); cbi(DDRB,1); delayMicroseconds( 420 ); // ix: 75 ton: 460 toff: 420
|
||||
sbi(DDRB,1); delayMicroseconds( 424 ); cbi(DDRB,1); delayMicroseconds( 424 ); // ix: 77 ton: 424 toff: 424
|
||||
sbi(DDRB,1); delayMicroseconds( 460 ); cbi(DDRB,1); delayMicroseconds( 424 ); // ix: 79 ton: 460 toff: 424
|
||||
sbi(DDRB,1); delayMicroseconds( 460 ); cbi(DDRB,1); delayMicroseconds( 420 ); // ix: 81 ton: 460 toff: 420
|
||||
sbi(DDRB,1); delayMicroseconds( 424 ); cbi(DDRB,1); delayMicroseconds( 424 ); // ix: 83 ton: 424 toff: 424
|
||||
sbi(DDRB,1); delayMicroseconds( 460 ); cbi(DDRB,1); delayMicroseconds(1300 ); // ix: 85 ton: 460 toff:1300
|
||||
sbi(DDRB,1); delayMicroseconds( 428 ); cbi(DDRB,1); delayMicroseconds(1300 ); // ix: 87 ton: 428 toff:1300
|
||||
sbi(DDRB,1); delayMicroseconds( 464 ); cbi(DDRB,1); delayMicroseconds( 420 ); // ix: 89 ton: 464 toff: 420
|
||||
sbi(DDRB,1); delayMicroseconds( 456 ); cbi(DDRB,1); delayMicroseconds(1272 ); // ix: 91 ton: 456 toff:1272
|
||||
sbi(DDRB,1); delayMicroseconds( 456 ); cbi(DDRB,1); delayMicroseconds(1300 ); // ix: 93 ton: 456 toff:1300
|
||||
sbi(DDRB,1); delayMicroseconds( 428 ); cbi(DDRB,1); delayMicroseconds( 420 ); // ix: 95 ton: 428 toff: 420
|
||||
sbi(DDRB,1); delayMicroseconds( 464 ); cbi(DDRB,1); delayMicroseconds(1300 ); // ix: 97 ton: 464 toff:1300
|
||||
sbi(DDRB,1); delayMicroseconds( 456 ); cbi(DDRB,1);
|
||||
}
|
||||
|
||||
/********************************************************************/
|
||||
void send_rev() {
|
||||
ICR1 = 16000 /37; // IR carrier frequency
|
||||
sbi(DDRB,1); delayMicroseconds(3500 ); cbi(DDRB,1); delayMicroseconds(1708 ); // ix: 1 ton:3500 toff:1708
|
||||
sbi(DDRB,1); delayMicroseconds( 460 ); cbi(DDRB,1); delayMicroseconds( 424 ); // ix: 3 ton: 460 toff: 424
|
||||
sbi(DDRB,1); delayMicroseconds( 456 ); cbi(DDRB,1); delayMicroseconds(1268 ); // ix: 5 ton: 456 toff:1268
|
||||
sbi(DDRB,1); delayMicroseconds( 460 ); cbi(DDRB,1); delayMicroseconds( 424 ); // ix: 7 ton: 460 toff: 424
|
||||
sbi(DDRB,1); delayMicroseconds( 460 ); cbi(DDRB,1); delayMicroseconds( 424 ); // ix: 9 ton: 460 toff: 424
|
||||
sbi(DDRB,1); delayMicroseconds( 420 ); cbi(DDRB,1); delayMicroseconds( 424 ); // ix: 11 ton: 420 toff: 424
|
||||
sbi(DDRB,1); delayMicroseconds( 460 ); cbi(DDRB,1); delayMicroseconds( 424 ); // ix: 13 ton: 460 toff: 424
|
||||
sbi(DDRB,1); delayMicroseconds( 456 ); cbi(DDRB,1); delayMicroseconds( 424 ); // ix: 15 ton: 456 toff: 424
|
||||
sbi(DDRB,1); delayMicroseconds( 424 ); cbi(DDRB,1); delayMicroseconds( 420 ); // ix: 17 ton: 424 toff: 420
|
||||
sbi(DDRB,1); delayMicroseconds( 464 ); cbi(DDRB,1); delayMicroseconds( 420 ); // ix: 19 ton: 464 toff: 420
|
||||
sbi(DDRB,1); delayMicroseconds( 464 ); cbi(DDRB,1); delayMicroseconds( 420 ); // ix: 21 ton: 464 toff: 420
|
||||
sbi(DDRB,1); delayMicroseconds( 460 ); cbi(DDRB,1); delayMicroseconds( 388 ); // ix: 23 ton: 460 toff: 388
|
||||
sbi(DDRB,1); delayMicroseconds( 456 ); cbi(DDRB,1); delayMicroseconds( 428 ); // ix: 25 ton: 456 toff: 428
|
||||
sbi(DDRB,1); delayMicroseconds( 456 ); cbi(DDRB,1); delayMicroseconds( 428 ); // ix: 27 ton: 456 toff: 428
|
||||
sbi(DDRB,1); delayMicroseconds( 420 ); cbi(DDRB,1); delayMicroseconds(1300 ); // ix: 29 ton: 420 toff:1300
|
||||
sbi(DDRB,1); delayMicroseconds( 464 ); cbi(DDRB,1); delayMicroseconds( 420 ); // ix: 31 ton: 464 toff: 420
|
||||
sbi(DDRB,1); delayMicroseconds( 464 ); cbi(DDRB,1); delayMicroseconds( 384 ); // ix: 33 ton: 464 toff: 384
|
||||
sbi(DDRB,1); delayMicroseconds( 456 ); cbi(DDRB,1); delayMicroseconds( 428 ); // ix: 35 ton: 456 toff: 428
|
||||
sbi(DDRB,1); delayMicroseconds( 456 ); cbi(DDRB,1); delayMicroseconds( 428 ); // ix: 37 ton: 456 toff: 428
|
||||
sbi(DDRB,1); delayMicroseconds( 456 ); cbi(DDRB,1); delayMicroseconds( 428 ); // ix: 39 ton: 456 toff: 428
|
||||
sbi(DDRB,1); delayMicroseconds( 420 ); cbi(DDRB,1); delayMicroseconds( 420 ); // ix: 41 ton: 420 toff: 420
|
||||
sbi(DDRB,1); delayMicroseconds( 464 ); cbi(DDRB,1); delayMicroseconds(1300 ); // ix: 43 ton: 464 toff:1300
|
||||
sbi(DDRB,1); delayMicroseconds( 464 ); cbi(DDRB,1); delayMicroseconds(1264 ); // ix: 45 ton: 464 toff:1264
|
||||
sbi(DDRB,1); delayMicroseconds( 460 ); cbi(DDRB,1); delayMicroseconds( 424 ); // ix: 47 ton: 460 toff: 424
|
||||
sbi(DDRB,1); delayMicroseconds( 456 ); cbi(DDRB,1); delayMicroseconds(1268 ); // ix: 49 ton: 456 toff:1268
|
||||
sbi(DDRB,1); delayMicroseconds( 460 ); cbi(DDRB,1); delayMicroseconds( 424 ); // ix: 51 ton: 460 toff: 424
|
||||
sbi(DDRB,1); delayMicroseconds( 460 ); cbi(DDRB,1); delayMicroseconds( 420 ); // ix: 53 ton: 460 toff: 420
|
||||
sbi(DDRB,1); delayMicroseconds( 424 ); cbi(DDRB,1); delayMicroseconds( 424 ); // ix: 55 ton: 424 toff: 424
|
||||
sbi(DDRB,1); delayMicroseconds( 460 ); cbi(DDRB,1); delayMicroseconds( 424 ); // ix: 57 ton: 460 toff: 424
|
||||
sbi(DDRB,1); delayMicroseconds( 456 ); cbi(DDRB,1); delayMicroseconds( 428 ); // ix: 59 ton: 456 toff: 428
|
||||
sbi(DDRB,1); delayMicroseconds( 420 ); cbi(DDRB,1); delayMicroseconds( 420 ); // ix: 61 ton: 420 toff: 420
|
||||
sbi(DDRB,1); delayMicroseconds( 464 ); cbi(DDRB,1); delayMicroseconds( 420 ); // ix: 63 ton: 464 toff: 420
|
||||
sbi(DDRB,1); delayMicroseconds( 464 ); cbi(DDRB,1); delayMicroseconds( 420 ); // ix: 65 ton: 464 toff: 420
|
||||
sbi(DDRB,1); delayMicroseconds( 428 ); cbi(DDRB,1); delayMicroseconds(1300 ); // ix: 67 ton: 428 toff:1300
|
||||
sbi(DDRB,1); delayMicroseconds( 456 ); cbi(DDRB,1); delayMicroseconds( 428 ); // ix: 69 ton: 456 toff: 428
|
||||
sbi(DDRB,1); delayMicroseconds( 456 ); cbi(DDRB,1); delayMicroseconds( 392 ); // ix: 71 ton: 456 toff: 392
|
||||
sbi(DDRB,1); delayMicroseconds( 456 ); cbi(DDRB,1); delayMicroseconds(1304 ); // ix: 73 ton: 456 toff:1304
|
||||
sbi(DDRB,1); delayMicroseconds( 460 ); cbi(DDRB,1); delayMicroseconds( 420 ); // ix: 75 ton: 460 toff: 420
|
||||
sbi(DDRB,1); delayMicroseconds( 428 ); cbi(DDRB,1); delayMicroseconds( 420 ); // ix: 77 ton: 428 toff: 420
|
||||
sbi(DDRB,1); delayMicroseconds( 456 ); cbi(DDRB,1); delayMicroseconds(1308 ); // ix: 79 ton: 456 toff:1308
|
||||
sbi(DDRB,1); delayMicroseconds( 460 ); cbi(DDRB,1); delayMicroseconds( 384 ); // ix: 81 ton: 460 toff: 384
|
||||
sbi(DDRB,1); delayMicroseconds( 460 ); cbi(DDRB,1); delayMicroseconds(1304 ); // ix: 83 ton: 460 toff:1304
|
||||
sbi(DDRB,1); delayMicroseconds( 460 ); cbi(DDRB,1); delayMicroseconds( 384 ); // ix: 85 ton: 460 toff: 384
|
||||
sbi(DDRB,1); delayMicroseconds( 460 ); cbi(DDRB,1); delayMicroseconds( 424 ); // ix: 87 ton: 460 toff: 424
|
||||
sbi(DDRB,1); delayMicroseconds( 460 ); cbi(DDRB,1); delayMicroseconds(1304 ); // ix: 89 ton: 460 toff:1304
|
||||
sbi(DDRB,1); delayMicroseconds( 424 ); cbi(DDRB,1); delayMicroseconds(1300 ); // ix: 91 ton: 424 toff:1300
|
||||
sbi(DDRB,1); delayMicroseconds( 464 ); cbi(DDRB,1); delayMicroseconds(1264 ); // ix: 93 ton: 464 toff:1264
|
||||
sbi(DDRB,1); delayMicroseconds( 456 ); cbi(DDRB,1); delayMicroseconds(1308 ); // ix: 95 ton: 456 toff:1308
|
||||
sbi(DDRB,1); delayMicroseconds( 456 ); cbi(DDRB,1); delayMicroseconds(1264 ); // ix: 97 ton: 456 toff:1264
|
||||
sbi(DDRB,1); delayMicroseconds( 464 ); cbi(DDRB,1);
|
||||
}
|
||||
@@ -1,423 +0,0 @@
|
||||
/* DVD IR Synchronizer
|
||||
*
|
||||
* connect a IR LED to: Anode pin9, Cathode pin8
|
||||
* KHM 2010 / Martin Nawrath
|
||||
* Kunsthochschule fuer Medien Koeln
|
||||
* Academy of Media Arts Cologne
|
||||
|
||||
*/
|
||||
|
||||
|
||||
#include <MsTimer2.h>
|
||||
|
||||
|
||||
#ifndef cbi
|
||||
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
|
||||
#endif
|
||||
#ifndef sbi
|
||||
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
|
||||
#endif
|
||||
|
||||
|
||||
int pinIR_OUT =9;
|
||||
int pinGND =8;
|
||||
int pinLED =13;
|
||||
|
||||
int bb;
|
||||
int tics;
|
||||
int secs;
|
||||
int f_sec;
|
||||
int f_sync;
|
||||
int playtime= 40*60+30; // set here ypur DVD title playtime
|
||||
|
||||
|
||||
|
||||
|
||||
void setup() {
|
||||
|
||||
pinMode(pinGND,OUTPUT);
|
||||
|
||||
Serial.begin(115200);
|
||||
|
||||
Serial.println("DVD Synchronizer");
|
||||
Serial.print("Playtime: ");
|
||||
secs=playtime;
|
||||
Serial.print("sec:");
|
||||
Serial.print(secs);
|
||||
Serial.print(" / mm:ss ");
|
||||
Serial.print(secs/60);
|
||||
Serial.print(":");
|
||||
Serial.print(secs % 60);
|
||||
Serial.println("");
|
||||
|
||||
|
||||
TCCR1A = 0;
|
||||
cbi(TCCR1A,COM1A0); // timer1 counter control
|
||||
|
||||
sbi(TCCR1A,COM1A1); // clear on compare match
|
||||
|
||||
cbi(TCCR1A,WGM10); // waveform generation mode 14 TOP=ICR1
|
||||
sbi(TCCR1A,WGM11);
|
||||
sbi(TCCR1B,WGM12);
|
||||
sbi(TCCR1B,WGM13);
|
||||
|
||||
sbi(TCCR1B,CS10); // timer 1 clock select
|
||||
cbi(TCCR1B,CS11); // prescaler=1
|
||||
cbi(TCCR1B,CS12);
|
||||
|
||||
int f_carrier = 37 ; // choose right IR carrier frequency
|
||||
ICR1 = 16000 / f_carrier ;
|
||||
|
||||
OCR1A = 200 ; // Leistung der Sendediode 0..200
|
||||
|
||||
pinMode(pinIR_OUT,OUTPUT);
|
||||
pinMode(pinLED,OUTPUT);
|
||||
|
||||
|
||||
MsTimer2::set(10, ms10); // 10ms period
|
||||
MsTimer2::start();
|
||||
|
||||
Serial.println("play");
|
||||
send_play();
|
||||
delay(7000);
|
||||
|
||||
|
||||
|
||||
secs=playtime;
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/********************************************************************/
|
||||
void loop() {
|
||||
|
||||
|
||||
if(f_sec){
|
||||
f_sec=0;
|
||||
|
||||
Serial.print("sec:");
|
||||
Serial.print(secs);
|
||||
Serial.print(" / mm:ss ");
|
||||
Serial.print(secs/60);
|
||||
Serial.print(":");
|
||||
Serial.print(secs % 60);
|
||||
Serial.println("");
|
||||
|
||||
if (secs >= playtime){
|
||||
f_sync=1;
|
||||
Serial.println("Sync");
|
||||
|
||||
Serial.println("pause");
|
||||
send_pause();
|
||||
delay(2000);
|
||||
|
||||
Serial.println("rev");
|
||||
send_rev();
|
||||
delay(2000);
|
||||
|
||||
Serial.println("play");
|
||||
send_play();
|
||||
|
||||
secs=0;
|
||||
f_sync=0;
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
}
|
||||
/********************************************************************/
|
||||
void ms10() {
|
||||
tics++;
|
||||
if (tics >= 100) {
|
||||
tics=0;
|
||||
secs++;
|
||||
f_sec=1;
|
||||
PORTB ^= 32;
|
||||
}
|
||||
if (f_sync==1)
|
||||
if ( tics % 10 == 0) PORTB ^= 32;
|
||||
|
||||
}
|
||||
|
||||
/********************************************************************/
|
||||
void send_stop() {
|
||||
|
||||
ICR1 = 16000 /40; // ICR1 = 16000 /40; // IR carrier frequency
|
||||
sbi(DDRB,1); delayMicroseconds(2400 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 1 ton:2400 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds( 648 ); cbi(DDRB,1); delayMicroseconds( 564 ); // ix: 3 ton: 648 toff: 564
|
||||
sbi(DDRB,1); delayMicroseconds( 608 ); cbi(DDRB,1); delayMicroseconds( 604 ); // ix: 5 ton: 608 toff: 604
|
||||
sbi(DDRB,1); delayMicroseconds( 608 ); cbi(DDRB,1); delayMicroseconds( 568 ); // ix: 7 ton: 608 toff: 568
|
||||
sbi(DDRB,1); delayMicroseconds(1236 ); cbi(DDRB,1); delayMicroseconds( 564 ); // ix: 9 ton:1236 toff: 564
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 11 ton:1228 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 576 ); // ix: 13 ton:1228 toff: 576
|
||||
sbi(DDRB,1); delayMicroseconds( 636 ); cbi(DDRB,1); delayMicroseconds( 576 ); // ix: 15 ton: 636 toff: 576
|
||||
sbi(DDRB,1); delayMicroseconds( 636 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 17 ton: 636 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 576 ); // ix: 19 ton:1228 toff: 576
|
||||
sbi(DDRB,1); delayMicroseconds( 600 ); cbi(DDRB,1); delayMicroseconds( 612 ); // ix: 21 ton: 600 toff: 612
|
||||
sbi(DDRB,1); delayMicroseconds(1188 ); cbi(DDRB,1); delayMicroseconds( 612 ); // ix: 23 ton:1188 toff: 612
|
||||
sbi(DDRB,1); delayMicroseconds(1192 ); cbi(DDRB,1); delayMicroseconds( 600 ); // ix: 25 ton:1192 toff: 600
|
||||
sbi(DDRB,1); delayMicroseconds(1200 ); cbi(DDRB,1); delayMicroseconds( 604 ); // ix: 27 ton:1200 toff: 604
|
||||
sbi(DDRB,1); delayMicroseconds( 608 ); cbi(DDRB,1); delayMicroseconds( 564 ); // ix: 29 ton: 608 toff: 564
|
||||
sbi(DDRB,1); delayMicroseconds( 648 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 31 ton: 648 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 564 ); // ix: 33 ton:1228 toff: 564
|
||||
sbi(DDRB,1); delayMicroseconds( 648 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 35 ton: 648 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds( 604 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 37 ton: 604 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 600 ); // ix: 39 ton:1228 toff: 600
|
||||
sbi(DDRB,1); delayMicroseconds( 612 ); cbi(DDRB,1); delayMicroseconds(13252 ); // ix: 41 ton: 612 toff:13252
|
||||
sbi(DDRB,1); delayMicroseconds(2400 ); cbi(DDRB,1); delayMicroseconds( 608 ); // ix: 43 ton:2400 toff: 608
|
||||
sbi(DDRB,1); delayMicroseconds( 612 ); cbi(DDRB,1); delayMicroseconds( 564 ); // ix: 45 ton: 612 toff: 564
|
||||
sbi(DDRB,1); delayMicroseconds( 644 ); cbi(DDRB,1); delayMicroseconds( 568 ); // ix: 47 ton: 644 toff: 568
|
||||
sbi(DDRB,1); delayMicroseconds( 608 ); cbi(DDRB,1); delayMicroseconds( 604 ); // ix: 49 ton: 608 toff: 604
|
||||
sbi(DDRB,1); delayMicroseconds(1196 ); cbi(DDRB,1); delayMicroseconds( 604 ); // ix: 51 ton:1196 toff: 604
|
||||
sbi(DDRB,1); delayMicroseconds(1192 ); cbi(DDRB,1); delayMicroseconds( 608 ); // ix: 53 ton:1192 toff: 608
|
||||
sbi(DDRB,1); delayMicroseconds(1192 ); cbi(DDRB,1); delayMicroseconds( 612 ); // ix: 55 ton:1192 toff: 612
|
||||
sbi(DDRB,1); delayMicroseconds( 600 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 57 ton: 600 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds( 648 ); cbi(DDRB,1); delayMicroseconds( 564 ); // ix: 59 ton: 648 toff: 564
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 61 ton:1228 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds( 640 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 63 ton: 640 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 576 ); // ix: 65 ton:1228 toff: 576
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 67 ton:1228 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 564 ); // ix: 69 ton:1228 toff: 564
|
||||
sbi(DDRB,1); delayMicroseconds( 612 ); cbi(DDRB,1); delayMicroseconds( 600 ); // ix: 71 ton: 612 toff: 600
|
||||
sbi(DDRB,1); delayMicroseconds( 608 ); cbi(DDRB,1); delayMicroseconds( 576 ); // ix: 73 ton: 608 toff: 576
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 564 ); // ix: 75 ton:1228 toff: 564
|
||||
sbi(DDRB,1); delayMicroseconds( 648 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 77 ton: 648 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds( 600 ); cbi(DDRB,1); delayMicroseconds( 612 ); // ix: 79 ton: 600 toff: 612
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 564 ); // ix: 81 ton:1228 toff: 564
|
||||
sbi(DDRB,1); delayMicroseconds( 608 ); cbi(DDRB,1); delayMicroseconds(13256 ); // ix: 83 ton: 608 toff:13256
|
||||
sbi(DDRB,1); delayMicroseconds(2436 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 85 ton:2436 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds( 608 ); cbi(DDRB,1); delayMicroseconds( 568 ); // ix: 87 ton: 608 toff: 568
|
||||
sbi(DDRB,1); delayMicroseconds( 644 ); cbi(DDRB,1); delayMicroseconds( 568 ); // ix: 89 ton: 644 toff: 568
|
||||
sbi(DDRB,1); delayMicroseconds( 644 ); cbi(DDRB,1); delayMicroseconds( 568 ); // ix: 91 ton: 644 toff: 568
|
||||
sbi(DDRB,1); delayMicroseconds(1232 ); cbi(DDRB,1); delayMicroseconds( 568 ); // ix: 93 ton:1232 toff: 568
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 95 ton:1228 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 97 ton:1228 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds( 604 ); cbi(DDRB,1); delayMicroseconds( 608 ); // ix: 99 ton: 604 toff: 608
|
||||
sbi(DDRB,1); delayMicroseconds( 608 ); cbi(DDRB,1); delayMicroseconds( 568 ); // ix:101 ton: 608 toff: 568
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix:103 ton:1228 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds( 640 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix:105 ton: 640 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix:107 ton:1228 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 576 ); // ix:109 ton:1228 toff: 576
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 564 ); // ix:111 ton:1228 toff: 564
|
||||
sbi(DDRB,1); delayMicroseconds( 648 ); cbi(DDRB,1); delayMicroseconds( 564 ); // ix:113 ton: 648 toff: 564
|
||||
sbi(DDRB,1); delayMicroseconds( 608 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix:115 ton: 608 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds(1232 ); cbi(DDRB,1); delayMicroseconds( 600 ); // ix:117 ton:1232 toff: 600
|
||||
sbi(DDRB,1); delayMicroseconds( 608 ); cbi(DDRB,1); delayMicroseconds( 576 ); // ix:119 ton: 608 toff: 576
|
||||
sbi(DDRB,1); delayMicroseconds( 636 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix:121 ton: 636 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds(1232 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix:123 ton:1232 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds( 600 ); cbi(DDRB,1);
|
||||
|
||||
|
||||
}
|
||||
|
||||
/********************************************************************/
|
||||
void send_play() {
|
||||
ICR1 = 16000 /40; // IR carrier frequency
|
||||
sbi(DDRB,1); delayMicroseconds(2400 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 1 ton:2400 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds( 640 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 3 ton: 640 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 5 ton:1228 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds( 640 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 7 ton: 640 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds( 604 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 9 ton: 604 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 11 ton:1228 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 608 ); // ix: 13 ton:1228 toff: 608
|
||||
sbi(DDRB,1); delayMicroseconds( 604 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 15 ton: 604 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds( 640 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 17 ton: 640 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 19 ton:1228 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds( 604 ); cbi(DDRB,1); delayMicroseconds( 608 ); // ix: 21 ton: 604 toff: 608
|
||||
sbi(DDRB,1); delayMicroseconds(1192 ); cbi(DDRB,1); delayMicroseconds( 608 ); // ix: 23 ton:1192 toff: 608
|
||||
sbi(DDRB,1); delayMicroseconds(1192 ); cbi(DDRB,1); delayMicroseconds( 604 ); // ix: 25 ton:1192 toff: 604
|
||||
sbi(DDRB,1); delayMicroseconds(1236 ); cbi(DDRB,1); delayMicroseconds( 564 ); // ix: 27 ton:1236 toff: 564
|
||||
sbi(DDRB,1); delayMicroseconds( 608 ); cbi(DDRB,1); delayMicroseconds( 568 ); // ix: 29 ton: 608 toff: 568
|
||||
sbi(DDRB,1); delayMicroseconds( 644 ); cbi(DDRB,1); delayMicroseconds( 568 ); // ix: 31 ton: 644 toff: 568
|
||||
sbi(DDRB,1); delayMicroseconds(1232 ); cbi(DDRB,1); delayMicroseconds( 568 ); // ix: 33 ton:1232 toff: 568
|
||||
sbi(DDRB,1); delayMicroseconds( 644 ); cbi(DDRB,1); delayMicroseconds( 568 ); // ix: 35 ton: 644 toff: 568
|
||||
sbi(DDRB,1); delayMicroseconds( 608 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 37 ton: 608 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 604 ); // ix: 39 ton:1228 toff: 604
|
||||
sbi(DDRB,1); delayMicroseconds( 608 ); cbi(DDRB,1); delayMicroseconds(13256 ); // ix: 41 ton: 608 toff:13256
|
||||
sbi(DDRB,1); delayMicroseconds(2400 ); cbi(DDRB,1); delayMicroseconds( 608 ); // ix: 43 ton:2400 toff: 608
|
||||
sbi(DDRB,1); delayMicroseconds( 604 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 45 ton: 604 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 47 ton:1228 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds( 640 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 49 ton: 640 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds( 604 ); cbi(DDRB,1); delayMicroseconds( 608 ); // ix: 51 ton: 604 toff: 608
|
||||
sbi(DDRB,1); delayMicroseconds(1192 ); cbi(DDRB,1); delayMicroseconds( 608 ); // ix: 53 ton:1192 toff: 608
|
||||
sbi(DDRB,1); delayMicroseconds(1192 ); cbi(DDRB,1); delayMicroseconds( 608 ); // ix: 55 ton:1192 toff: 608
|
||||
sbi(DDRB,1); delayMicroseconds( 604 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 57 ton: 604 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds( 640 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 59 ton: 640 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 61 ton:1228 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds( 640 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 63 ton: 640 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 65 ton:1228 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 568 ); // ix: 67 ton:1228 toff: 568
|
||||
sbi(DDRB,1); delayMicroseconds(1232 ); cbi(DDRB,1); delayMicroseconds( 568 ); // ix: 69 ton:1232 toff: 568
|
||||
sbi(DDRB,1); delayMicroseconds( 608 ); cbi(DDRB,1); delayMicroseconds( 604 ); // ix: 71 ton: 608 toff: 604
|
||||
sbi(DDRB,1); delayMicroseconds( 608 ); cbi(DDRB,1); delayMicroseconds( 568 ); // ix: 73 ton: 608 toff: 568
|
||||
sbi(DDRB,1); delayMicroseconds(1232 ); cbi(DDRB,1); delayMicroseconds( 568 ); // ix: 75 ton:1232 toff: 568
|
||||
sbi(DDRB,1); delayMicroseconds( 644 ); cbi(DDRB,1); delayMicroseconds( 568 ); // ix: 77 ton: 644 toff: 568
|
||||
sbi(DDRB,1); delayMicroseconds( 608 ); cbi(DDRB,1); delayMicroseconds( 608 ); // ix: 79 ton: 608 toff: 608
|
||||
sbi(DDRB,1); delayMicroseconds(1192 ); cbi(DDRB,1); delayMicroseconds( 604 ); // ix: 81 ton:1192 toff: 604
|
||||
sbi(DDRB,1); delayMicroseconds( 608 ); cbi(DDRB,1); delayMicroseconds(13252 ); // ix: 83 ton: 608 toff:13252
|
||||
sbi(DDRB,1); delayMicroseconds(2440 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 85 ton:2440 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds( 600 ); cbi(DDRB,1); delayMicroseconds( 576 ); // ix: 87 ton: 600 toff: 576
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 89 ton:1228 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds( 640 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 91 ton: 640 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds( 644 ); cbi(DDRB,1); delayMicroseconds( 568 ); // ix: 93 ton: 644 toff: 568
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 95 ton:1228 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 97 ton:1228 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds( 604 ); cbi(DDRB,1); delayMicroseconds( 608 ); // ix: 99 ton: 604 toff: 608
|
||||
sbi(DDRB,1); delayMicroseconds( 604 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix:101 ton: 604 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix:103 ton:1228 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds( 640 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix:105 ton: 640 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix:107 ton:1228 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 568 ); // ix:109 ton:1228 toff: 568
|
||||
sbi(DDRB,1); delayMicroseconds(1232 ); cbi(DDRB,1); delayMicroseconds( 568 ); // ix:111 ton:1232 toff: 568
|
||||
sbi(DDRB,1); delayMicroseconds( 644 ); cbi(DDRB,1); delayMicroseconds( 568 ); // ix:113 ton: 644 toff: 568
|
||||
sbi(DDRB,1); delayMicroseconds( 608 ); cbi(DDRB,1); delayMicroseconds( 604 ); // ix:115 ton: 608 toff: 604
|
||||
sbi(DDRB,1); delayMicroseconds(1196 ); cbi(DDRB,1); delayMicroseconds( 604 ); // ix:117 ton:1196 toff: 604
|
||||
sbi(DDRB,1); delayMicroseconds( 608 ); cbi(DDRB,1); delayMicroseconds( 568 ); // ix:119 ton: 608 toff: 568
|
||||
sbi(DDRB,1); delayMicroseconds( 644 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix:121 ton: 644 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 568 ); // ix:123 ton:1228 toff: 568
|
||||
sbi(DDRB,1); delayMicroseconds( 608 ); cbi(DDRB,1);
|
||||
|
||||
}
|
||||
|
||||
/********************************************************************/
|
||||
void send_pause() {
|
||||
ICR1 = 16000 /40; // IR carrier frequency
|
||||
sbi(DDRB,1); delayMicroseconds(2404 ); cbi(DDRB,1); delayMicroseconds( 568 ); // ix: 1 ton:2404 toff: 568
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 3 ton:1228 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds( 644 ); cbi(DDRB,1); delayMicroseconds( 568 ); // ix: 5 ton: 644 toff: 568
|
||||
sbi(DDRB,1); delayMicroseconds( 608 ); cbi(DDRB,1); delayMicroseconds( 604 ); // ix: 7 ton: 608 toff: 604
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 9 ton:1228 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 11 ton:1228 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 13 ton:1228 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds( 604 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 15 ton: 604 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds( 640 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 17 ton: 640 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 19 ton:1228 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds( 640 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 21 ton: 640 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 23 ton:1228 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 568 ); // ix: 25 ton:1228 toff: 568
|
||||
sbi(DDRB,1); delayMicroseconds(1236 ); cbi(DDRB,1); delayMicroseconds( 564 ); // ix: 27 ton:1236 toff: 564
|
||||
sbi(DDRB,1); delayMicroseconds( 608 ); cbi(DDRB,1); delayMicroseconds( 604 ); // ix: 29 ton: 608 toff: 604
|
||||
sbi(DDRB,1); delayMicroseconds( 608 ); cbi(DDRB,1); delayMicroseconds( 568 ); // ix: 31 ton: 608 toff: 568
|
||||
sbi(DDRB,1); delayMicroseconds(1236 ); cbi(DDRB,1); delayMicroseconds( 564 ); // ix: 33 ton:1236 toff: 564
|
||||
sbi(DDRB,1); delayMicroseconds( 644 ); cbi(DDRB,1); delayMicroseconds( 568 ); // ix: 35 ton: 644 toff: 568
|
||||
sbi(DDRB,1); delayMicroseconds( 644 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 37 ton: 644 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds(1232 ); cbi(DDRB,1); delayMicroseconds( 564 ); // ix: 39 ton:1232 toff: 564
|
||||
sbi(DDRB,1); delayMicroseconds( 608 ); cbi(DDRB,1); delayMicroseconds(12664 ); // ix: 41 ton: 608 toff:12664
|
||||
sbi(DDRB,1); delayMicroseconds(2408 ); cbi(DDRB,1); delayMicroseconds( 604 ); // ix: 43 ton:2408 toff: 604
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 45 ton:1228 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds( 608 ); cbi(DDRB,1); delayMicroseconds( 568 ); // ix: 47 ton: 608 toff: 568
|
||||
sbi(DDRB,1); delayMicroseconds( 644 ); cbi(DDRB,1); delayMicroseconds( 568 ); // ix: 49 ton: 644 toff: 568
|
||||
sbi(DDRB,1); delayMicroseconds(1232 ); cbi(DDRB,1); delayMicroseconds( 568 ); // ix: 51 ton:1232 toff: 568
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 53 ton:1228 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 55 ton:1228 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds( 640 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 57 ton: 640 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds( 604 ); cbi(DDRB,1); delayMicroseconds( 608 ); // ix: 59 ton: 604 toff: 608
|
||||
sbi(DDRB,1); delayMicroseconds(1192 ); cbi(DDRB,1); delayMicroseconds( 608 ); // ix: 61 ton:1192 toff: 608
|
||||
sbi(DDRB,1); delayMicroseconds( 604 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 63 ton: 604 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 65 ton:1228 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 604 ); // ix: 67 ton:1228 toff: 604
|
||||
sbi(DDRB,1); delayMicroseconds(1196 ); cbi(DDRB,1); delayMicroseconds( 604 ); // ix: 69 ton:1196 toff: 604
|
||||
sbi(DDRB,1); delayMicroseconds( 608 ); cbi(DDRB,1); delayMicroseconds( 568 ); // ix: 71 ton: 608 toff: 568
|
||||
sbi(DDRB,1); delayMicroseconds( 644 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 73 ton: 644 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 568 ); // ix: 75 ton:1228 toff: 568
|
||||
sbi(DDRB,1); delayMicroseconds( 608 ); cbi(DDRB,1); delayMicroseconds( 604 ); // ix: 77 ton: 608 toff: 604
|
||||
sbi(DDRB,1); delayMicroseconds( 608 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 79 ton: 608 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 568 ); // ix: 81 ton:1228 toff: 568
|
||||
sbi(DDRB,1); delayMicroseconds( 644 ); cbi(DDRB,1); delayMicroseconds(12628 ); // ix: 83 ton: 644 toff:12628
|
||||
sbi(DDRB,1); delayMicroseconds(2408 ); cbi(DDRB,1); delayMicroseconds( 604 ); // ix: 85 ton:2408 toff: 604
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 87 ton:1228 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds( 608 ); cbi(DDRB,1); delayMicroseconds( 564 ); // ix: 89 ton: 608 toff: 564
|
||||
sbi(DDRB,1); delayMicroseconds( 648 ); cbi(DDRB,1); delayMicroseconds( 564 ); // ix: 91 ton: 648 toff: 564
|
||||
sbi(DDRB,1); delayMicroseconds(1236 ); cbi(DDRB,1); delayMicroseconds( 568 ); // ix: 93 ton:1236 toff: 568
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 95 ton:1228 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 97 ton:1228 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds( 640 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 99 ton: 640 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds( 604 ); cbi(DDRB,1); delayMicroseconds( 608 ); // ix:101 ton: 604 toff: 608
|
||||
sbi(DDRB,1); delayMicroseconds(1192 ); cbi(DDRB,1); delayMicroseconds( 608 ); // ix:103 ton:1192 toff: 608
|
||||
sbi(DDRB,1); delayMicroseconds( 604 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix:105 ton: 604 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix:107 ton:1228 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 604 ); // ix:109 ton:1228 toff: 604
|
||||
sbi(DDRB,1); delayMicroseconds(1196 ); cbi(DDRB,1); delayMicroseconds( 604 ); // ix:111 ton:1196 toff: 604
|
||||
sbi(DDRB,1); delayMicroseconds( 608 ); cbi(DDRB,1); delayMicroseconds( 568 ); // ix:113 ton: 608 toff: 568
|
||||
sbi(DDRB,1); delayMicroseconds( 644 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix:115 ton: 644 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 568 ); // ix:117 ton:1228 toff: 568
|
||||
sbi(DDRB,1); delayMicroseconds( 608 ); cbi(DDRB,1); delayMicroseconds( 604 ); // ix:119 ton: 608 toff: 604
|
||||
sbi(DDRB,1); delayMicroseconds( 608 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix:121 ton: 608 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 568 ); // ix:123 ton:1228 toff: 568
|
||||
sbi(DDRB,1); delayMicroseconds( 644 ); cbi(DDRB,1);
|
||||
}
|
||||
|
||||
/********************************************************************/
|
||||
void send_rev() {
|
||||
ICR1 = 16000 /40; // IR carrier frequency
|
||||
sbi(DDRB,1); delayMicroseconds(2400 ); cbi(DDRB,1); delayMicroseconds( 568 ); // ix: 1 ton:2400 toff: 568
|
||||
sbi(DDRB,1); delayMicroseconds( 644 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 3 ton: 644 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds( 604 ); cbi(DDRB,1); delayMicroseconds( 608 ); // ix: 5 ton: 604 toff: 608
|
||||
sbi(DDRB,1); delayMicroseconds( 604 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 7 ton: 604 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds( 644 ); cbi(DDRB,1); delayMicroseconds( 568 ); // ix: 9 ton: 644 toff: 568
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 11 ton:1228 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 13 ton:1228 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds( 640 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 15 ton: 640 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds( 604 ); cbi(DDRB,1); delayMicroseconds( 608 ); // ix: 17 ton: 604 toff: 608
|
||||
sbi(DDRB,1); delayMicroseconds(1192 ); cbi(DDRB,1); delayMicroseconds( 608 ); // ix: 19 ton:1192 toff: 608
|
||||
sbi(DDRB,1); delayMicroseconds( 604 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 21 ton: 604 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 23 ton:1228 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 568 ); // ix: 25 ton:1228 toff: 568
|
||||
sbi(DDRB,1); delayMicroseconds(1232 ); cbi(DDRB,1); delayMicroseconds( 568 ); // ix: 27 ton:1232 toff: 568
|
||||
sbi(DDRB,1); delayMicroseconds( 644 ); cbi(DDRB,1); delayMicroseconds( 568 ); // ix: 29 ton: 644 toff: 568
|
||||
sbi(DDRB,1); delayMicroseconds( 608 ); cbi(DDRB,1); delayMicroseconds( 608 ); // ix: 31 ton: 608 toff: 608
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 568 ); // ix: 33 ton:1228 toff: 568
|
||||
sbi(DDRB,1); delayMicroseconds( 608 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 35 ton: 608 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds( 640 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 37 ton: 640 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 568 ); // ix: 39 ton:1228 toff: 568
|
||||
sbi(DDRB,1); delayMicroseconds( 644 ); cbi(DDRB,1); delayMicroseconds(13808 ); // ix: 41 ton: 644 toff:13808
|
||||
sbi(DDRB,1); delayMicroseconds(2436 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 43 ton:2436 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds( 640 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 45 ton: 640 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds( 640 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 47 ton: 640 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds( 604 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 49 ton: 604 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds( 644 ); cbi(DDRB,1); delayMicroseconds( 568 ); // ix: 51 ton: 644 toff: 568
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 53 ton:1228 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 55 ton:1228 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds( 640 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 57 ton: 640 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds( 604 ); cbi(DDRB,1); delayMicroseconds( 608 ); // ix: 59 ton: 604 toff: 608
|
||||
sbi(DDRB,1); delayMicroseconds(1192 ); cbi(DDRB,1); delayMicroseconds( 608 ); // ix: 61 ton:1192 toff: 608
|
||||
sbi(DDRB,1); delayMicroseconds( 604 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 63 ton: 604 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 65 ton:1228 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 67 ton:1228 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 568 ); // ix: 69 ton:1228 toff: 568
|
||||
sbi(DDRB,1); delayMicroseconds( 644 ); cbi(DDRB,1); delayMicroseconds( 568 ); // ix: 71 ton: 644 toff: 568
|
||||
sbi(DDRB,1); delayMicroseconds( 644 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 73 ton: 644 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 568 ); // ix: 75 ton:1228 toff: 568
|
||||
sbi(DDRB,1); delayMicroseconds( 608 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 77 ton: 608 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds( 640 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 79 ton: 640 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 568 ); // ix: 81 ton:1228 toff: 568
|
||||
sbi(DDRB,1); delayMicroseconds( 644 ); cbi(DDRB,1); delayMicroseconds(13844 ); // ix: 83 ton: 644 toff:13844
|
||||
sbi(DDRB,1); delayMicroseconds(2436 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 85 ton:2436 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds( 604 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 87 ton: 604 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds( 640 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 89 ton: 640 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds( 644 ); cbi(DDRB,1); delayMicroseconds( 568 ); // ix: 91 ton: 644 toff: 568
|
||||
sbi(DDRB,1); delayMicroseconds( 608 ); cbi(DDRB,1); delayMicroseconds( 604 ); // ix: 93 ton: 608 toff: 604
|
||||
sbi(DDRB,1); delayMicroseconds(1188 ); cbi(DDRB,1); delayMicroseconds( 612 ); // ix: 95 ton:1188 toff: 612
|
||||
sbi(DDRB,1); delayMicroseconds(1192 ); cbi(DDRB,1); delayMicroseconds( 608 ); // ix: 97 ton:1192 toff: 608
|
||||
sbi(DDRB,1); delayMicroseconds( 604 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix: 99 ton: 604 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds( 644 ); cbi(DDRB,1); delayMicroseconds( 568 ); // ix:101 ton: 644 toff: 568
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix:103 ton:1228 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds( 640 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix:105 ton: 640 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix:107 ton:1228 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix:109 ton:1228 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 568 ); // ix:111 ton:1228 toff: 568
|
||||
sbi(DDRB,1); delayMicroseconds( 608 ); cbi(DDRB,1); delayMicroseconds( 608 ); // ix:113 ton: 608 toff: 608
|
||||
sbi(DDRB,1); delayMicroseconds( 604 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix:115 ton: 604 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds(1228 ); cbi(DDRB,1); delayMicroseconds( 568 ); // ix:117 ton:1228 toff: 568
|
||||
sbi(DDRB,1); delayMicroseconds( 644 ); cbi(DDRB,1); delayMicroseconds( 572 ); // ix:119 ton: 644 toff: 572
|
||||
sbi(DDRB,1); delayMicroseconds( 604 ); cbi(DDRB,1); delayMicroseconds( 608 ); // ix:121 ton: 604 toff: 608
|
||||
sbi(DDRB,1); delayMicroseconds(1192 ); cbi(DDRB,1); delayMicroseconds( 608 ); // ix:123 ton:1192 toff: 608
|
||||
sbi(DDRB,1); delayMicroseconds( 604 ); cbi(DDRB,1);
|
||||
|
||||
}
|
||||
|
||||
@@ -1,25 +0,0 @@
|
||||
/*
|
||||
* Remote Test for Toshiba DVD player
|
||||
* by Joe Foley <foley@mit.edu>
|
||||
* Codes from http://lirc.sourceforge.net/remotes/toshiba/SE-R0313
|
||||
* IRRemote library at http://www.righto.com/2009/08/multi-protocol-infrared-remote-library.html
|
||||
* A random text file says that Toshiba uses the NEC protocol
|
||||
*/
|
||||
#include <IRremote.h>
|
||||
|
||||
#define ToshibaAddress 0xA25D // Panasonic address (Pre data)
|
||||
#define TobshibaPower 0x48B7 // Panasonic Power button
|
||||
|
||||
|
||||
IRsend irsend;
|
||||
|
||||
void setup()
|
||||
{
|
||||
Serial.begin(115200);
|
||||
Serial.println("IRremote test for Toshiba SD560EKE");
|
||||
}
|
||||
|
||||
void loop() {
|
||||
irsend.sendNEC(ToshibaAddress,ToshibaPower); // This should turn your TV on and off
|
||||
delayMicroseconds(500);
|
||||
}
|
||||
@@ -1,44 +0,0 @@
|
||||
/*
|
||||
* Remote Test for Toshiba DVD player
|
||||
* by Joe Foley <foley@mit.edu>
|
||||
* Codes from http://lirc.sourceforge.net/remotes/toshiba/SE-R0313
|
||||
* IRRemote library at http://www.righto.com/2009/08/multi-protocol-infrared-remote-library.html
|
||||
* A random text file says that Toshiba uses the NEC protocol
|
||||
*/
|
||||
#include <IRremote.h>
|
||||
|
||||
#define ToshibaAddress 0xA25D // Toshiba address (Pre data)
|
||||
#define ToshibaPower 0x48B7 // Toshiba Power button
|
||||
|
||||
IRsend irsend;
|
||||
|
||||
void setup()
|
||||
{
|
||||
Serial.begin(115200);
|
||||
Serial.println("IRremote test for Toshiba SD560EKE $Rev$");
|
||||
Serial.println("$URL$");
|
||||
Serial.println("$Id$");
|
||||
|
||||
|
||||
// power
|
||||
//irsend.sendNEC(0xA25D48B7,32);
|
||||
//delayMicroseconds(200);
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
||||
void loop() {
|
||||
// pause
|
||||
irsend.sendNEC(0xA25D00FF, 32);
|
||||
delay(2000);
|
||||
|
||||
// previous
|
||||
irsend.sendNEC(0xA25DC43B, 32);
|
||||
delay(2000);
|
||||
|
||||
//play
|
||||
irsend.sendNEC(0xA25DA857,32);
|
||||
delay(10000);
|
||||
|
||||
}
|
||||
Reference in New Issue
Block a user