#!/usr/bin/env python import numpy as np import matplotlib.pyplot as plt from scipy.stats import norm ## Data goes here for now --foley data = np.array([1, 1.1, 0.9, 1, 1, 0.9, 0.9]) lowerbound = 0.9 upperbound = 1.0 mean = data.mean() stddev = data.std(ddof=1) # Delta Degrees of Freedom: ddof=0 for population, ddof=1 for sample std dev prob = norm.cdf(upperbound, mean, stddev) - norm.cdf(lowerbound, mean, stddev) #print("probability: %f", prob) info = -np.emath.log2(prob) #print("information content: %f bits", info) ## place text on plot: https://matplotlib.org/3.3.4/gallery/recipes/placing_text_boxes.html fig, ax = plt.subplots() textstr = '\n'.join(( r'$n=%d$' % (len(data)), r'$\mu=%.2f$' % (mean, ), r'$P=%.2f$' % (prob, ), r'$I=%.2f$ bits' % (info, ))) # these are matplotlib.patch.Patch properties props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) # place a text box in upper left in axes coords ax.text(0.05, 0.95, textstr, transform=ax.transAxes, fontsize=14, verticalalignment='top', bbox=props) x = np.linspace(mean-3*stddev, mean+3*stddev, 500) y = norm.pdf(x, mean, stddev) plt.axvline(x=mean, color="green", linestyle="dashed", label="mean") plt.axvline(lowerbound, color="red") plt.axvline(upperbound, color="red") plt.plot(x, y, 'b-', label='Normal distribution') #yt = scipy.stats.t.pdf(x, len(data)-1, mean, stddev) #plt.plot(x, yt, 'g-', label='T Distribution') coloredregion = (x >= lowerbound) & ( x <= upperbound ) #select x values plt.fill_between(x, 0, y, where=coloredregion, color="grey", alpha=0.5, label="Design range") plt.xlabel('X') plt.ylabel('Probability density') plt.legend() plt.grid(True) top = plt.ylim()[1] plt.show() # annotate values on X after drawing the graphs